Ultra High Energy Neutrino Detection and TXS 0506+056 observation with IceCube

Matteo Feltre Università degli Studi di Siena

Astrophysics Seminar

Overview

- 1. Extragalactic Sources
- 2. Emission models
- 3. UHE Neutrinos detection
- 4. IceCube
- 5. TXS 0506+056 case

Particles from the Universe

Since the beginning of 20th Century, particles from outside the Earth have been discovered in a huge energy range

Several experimental techniques have been developed!

A change in differential flux slope is seen at the level of knee and ankle

The cosmic rays acceleration is due to different sources:

• Galactic

Supernovae Remnant, Pulsar, Pulsar Wind Nebulae

• Extragalactic

Active Galaxy Nuclei, Gamma Ray Bursts

The maximum energy reachable depends on the source!

The most energetic particles probe a range unreachable by accelerators

Active Galaxies

"Active galaxies" is a general term that refers to a wide range of phenomena, that can be classified based upon:

 $1 \text{ erg} = 10^{-7}$

- 1. Radio-emission
- 2. Optical luminosity
- 3. Orientation towards the observer

Main Characteristics

- Most powerful non-explosive sources
- Emitting regions: few milli-parsec
- Strong evolution: higher powers in the past, peak at z=2
- Broad-band emission

What are the emission mechanisms involved?

1. Thermal radiation (90% of AGN):

Originating from the heated in-falling matter in the accretion disk near the central black hole *Thermal dominated or disk dominated AGN*

Active galaxies represent 1% of total galaxies

2. Nonthermal emission:

Particles are accelerated in a jet of material ejected from the nucleus *Jet dominated AGN*

They corresponds mostly to **radio loud AGN** They can be classified based upon **their jets orientation w.r.t. Earth**:

They corresponds mostly to radio loud AGN

They can be classified based upon **their jets orientation w.r.t. Earth**:

- 1. Nonaligned AGN
- Radio Galaxies

Red:

Hot spot emission 300k l.y. away from the centre

Blue: X-rays

Cygnus A Chandra/Hubble/VLA 7×10^8 l. y. away

They corresponds mostly to radio loud AGN

They can be classified based upon **their jets orientation w.r.t. Earth**:

- 1. Nonaligned AGN
- Radio Galaxies
- Quasars

They corresponds mostly to radio loud AGN

They can be classified based upon **their jets orientation w.r.t. Earth**:

- 1. Nonaligned AGN
- Radio Galaxies
- Quasars

2. Blazars

Strong and rapid variability **Relativistic effects**

Blazars make up to 55-90% of Fermi sky (50 MeV-1 TeV) 90% of extragalactic sources with E>1 TeV are blazars

Jets Emission Models

What are jets made of?

- 1. Electrons
- 2. Hadrons
- 3. Both

We should rely on **<u>neutral particles</u>**

Hadronic Models

- p+p collision
- photoproduction

- **Leptonic Models**
- Synchrotron emission
- Inverse Compton scattering
- Synchrotron Self-Compton

Photons and Neutrinos

<u>Photons</u>

<u>Charged particles</u> are influenced by Magnetic Fields

The energy escaping from the source is shared among high-energy protons, photons and neutrinos.

Medium should be **transparent** enough:

- 1. Much larger than proton mean free path
- 2. Smaller than pion interaction length

$$\phi_{CR}(E) \propto E^{-\alpha_{CR}} \longrightarrow \alpha_{CR} \sim \alpha_{\nu} \sim \alpha_{\gamma}$$

Neutrinos can demonstrate the presence of hadronic mechanisms at work!

Jets in AGN

Jets are a source of non thermal emission

Not enough evidence to support one of the theoretical models as explanation

The leading proposed model is the following:

- 1. Matter in the accretion disk falls into black hole
- 2. Gravitational energy is converted into kinematic energy
- 3. Velocity can arrive up to give $\Gamma \sim 50$

Jets in AGN

Jets are a source of non thermal emission

Not enough evidence to support one of the theoretical models as explanation

2. Interferometry with radio telescopes

The leading proposed model is the following:

- 1. Matter in the accretion disk falls into black hole
- 2. Gravitational energy is converted into kinematic energy
- 3. Velocity can arrive up to give $\Gamma \sim 50$

Open questions:

- Leptonic or hadronic origin of emitted γ –rays
- Point of emission along jets

The region of emission has a relation with **time variability in the photon flux**

$$R \sim 10^{15} \cdot \left(\frac{\Gamma}{10}\right) \cdot \left(\frac{\Delta t_{TeV}}{1 \text{ h}}\right) \text{cm}$$

 $\Delta t \sim 1 \text{ h}$ is linked with $R_{sch} \sim \frac{2GM}{c^2} \rightarrow M_{bh} \sim 10^9 M_{sun}$

Multi-messenger Astrophysics

It gives a unique insight on astrophysical phenomena by combining information of:

- Photons
- Cosmic Rays
- Neutrinos
- Gravitational waves

Earliest multi-messenger neutrino detection:

- Solar neutrinos from Sun in Homestake mine
- Neutrinos from SN1987A

Matteo Feltre

Neutrinos are produced in <u>hadronic processes</u> caused by highly energetic protons interacting with particles near the acceleration site, like in a **beam dump**.

Neutrinos are produced in <u>hadronic processes</u> caused by highly energetic protons interacting with particles near the acceleration site, like in a **beam dump**.

Neutrinos are produced in <u>hadronic processes</u> caused by highly energetic protons interacting with particles near the acceleration site, like in a **beam dump**.

X-rays

gamma-rays

neutrinos

cosmic-rays

infrared/optical

radio/microwave

Neutrinos are produced in <u>hadronic processes</u> caused by highly energetic protons interacting with particles near the acceleration site, like in a **beam dump**.

radio/microwave

infrared/optical

X-rays

gamma-rays

neutrinos

cosmic-rays

Neutrino Interaction with matter

High energy neutrinos interact with a **nucleon N** via:

- **Charged Current (CC)** interaction $v_l + N \rightarrow l + X$ ٠
- **Neutral Current (NC)** interaction $v_l + N \rightarrow v_l + X$ ٠

Angular resolution is achieved only thanks to CC interactions ٠

Matteo Feltre

background free!

Neutrino Interaction with matter

High energy neutrinos interact with a **nucleon N** via:

- Charged Current (CC) interaction $v_l + N \rightarrow l + X$
- Neutral Current (NC) interaction $v_l + N \rightarrow v_l + X$

• Angular resolution is achieved only thanks to CC interactions

Neutrino detection example

The flux of incoming photons is related to the one from Crab Nebula:

$$E_{\gamma}^{2} \frac{d\phi_{\gamma}}{dE_{\gamma}} = 10^{-11} \text{cm}^{-2} \text{s}^{-1} \text{TeV} = 1 \text{ C. U.} \rightarrow From \text{ recent observations at 1 TeV:}$$

$$I_{0} = (3.76 \pm 0.07_{stat}) \times 10^{-11} \text{cm}^{-2} \text{s}^{-1} \text{TeV}^{-1}$$
Assumption:
$$E_{\gamma}^{2} \frac{d\phi_{\gamma}}{dE_{\gamma}} \sim E_{\nu}^{2} \frac{d\phi_{\nu}}{dE_{\nu}}$$

In an experiment like IceCube
$$N(E_{\mu} > 1~{
m TeV}) \sim 2.8~{
m yr}^{-1}$$

Up to 10^{13} eV, the increase is **linear** 10^{5} 10^{4} CC a 103 10^{15} 1017 E [eV]10 10 10 Atmospheric muons h=1680 m.w.e. Atmospheric Flux (cm⁻²s⁻¹sr⁻¹, muons. h=3880 m.w.e 10⁻¹ **10**⁻¹² 0-1 - v, induced, E, >100 GeV v, induced, E, >1 TeV 10⁻¹ -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 cosθ

Matteo Feltre

Cherenkov Radiation

Cherenkov radiation arises any time a charged particle travels in a medium with a speed larger than the one of the light in that

 $\beta > \frac{1}{n}$

This means that there is an energy threshold depending on the refraction index $n(\lambda)$

A wave front arises with a given angle:

$$\cos\theta_{\rm C} = \frac{1}{\beta n}$$

The light yield for Cherenkov photons is:

$$\frac{d^2 N}{dx d\lambda} = \frac{2\pi\alpha Z^2}{\lambda^2} \sin^2 \theta_C = \frac{2\pi\alpha Z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2}\right) \propto \frac{1}{\lambda^2}$$

The total light that a PMT receives is: (we need to take into account the PMT efficiency)

$$\frac{dN}{dx} = \int_{\lambda_1}^{\lambda_2} \frac{2\pi\alpha Z^2}{\lambda^2} \sin^2\theta_C \, d\lambda \sim 400 - 500 \sin^2\theta_C$$

Typical media:

Water

- Air
- lce

Particle detection in transparent media

Water

- 1. Transparent in a narrow range 350 nm $\leq \lambda \leq$ 550 nm
- 2. Absorption length $\lambda_{abs} \sim 70 \text{ m}$
- 3. Larger scattering length
- 4. Background from bio-luminescence

Ice at South Pole

- 1. Absorption length $\lambda_{abs} \sim 100 \text{ m}$ maximum in blue region
- 2. Smaller scattering length
- 3. Impurities trapped such as **bubble** and **dust**
- 4. Large formation time

The Waxman-Bachall Bound

What is the limit that we can expect from UHE neutrinos? Cosmic rays are well characterized at energies $\geq 10^{19}$ eV

The idea is to derive a **model independent** bound on the flux of associated neutrinos

Assumptions:

- 1. Protons are accelerated with a power-law spectrum of $\Gamma = 2$
- All protons undergo p-γ or p-p interactions, producing:
 Neutrons, neutrinos, photons
- Sources are thin to neutrons: Neutrons can escape the interaction regions and decay

$$n \to p + e^- + \overline{\nu_e}$$

4. Luminosity evolution of far away source is not stronger than all known sources

Expected event rate in a neutrino telescope

Expected event rate in a neutrino telescope

The IceCube Neutrino Observatory

It consists of a in-ice array (IceCube) and a surface air shower array (IceTop)

IceCube utilises one cubic kilometer of the deep ultra-clear glacial ice at South Pole as medium It is instrumented with **5160 Digital Optical Modules (DOMs)**:

ligh Voltage Generator &

Digital Control Assembly

Shield Cage

Mu-Metal Magnetic

Glass Pressure Sphere

- 86 read-out and support cables
- Depth between 1.5-2.5 km
- 8 central strings are instrumented with a larger number of DOMs

Digital Optical Modules

DOMs are set to operate on single p.e. threshold Dark noise is of the order of 500 Hz (limit on radioactivity) Working temperature down to -55°C

90% survival after 15 yr

Search for Neutrinos

Continuous observation since 5 April 2008

Identification of Neutrino sources

- EM showers
- Hadronic showers
- Neutral Current Interactions

They represent a **point source of Cherenkov photons** radiated by shower particles Detection of all flavors has become important:

Identification of Neutrino sources

Neutrino telescopes detect the Cherenkov light radiated by secondary particles showers produced by neutrinos of all flavors. It includes:

- EM showers
- Hadronic showers
- Neutral Current Interactions

Cosmic accelerator
 $\nu_e: \nu_{\mu}: \nu_{\tau} = 1: 2: 0$ After propagation
 $\nu_e: \nu_{\mu}: \nu_{\tau} = 1: 1: 1$

The size of these showers is ~ 10 m in ice, which is small with respect to the spacing of PMTs. They represent a **point source of Cherenkov photons** radiated by shower particles Detection of all flavors has become important:

 $\begin{array}{l} \text{Mean lifetimes} \\ \tau_{\mu} = 2.2 \times 10^{-6} \text{s} \\ \tau_{\tau} = 2.9 \times 10^{-13} \text{s} \end{array}$

Identification of Neutrino sources

Neutrino telescopes detect the Cherenkov light radiated by secondary particles showers produced by neutrinos of all flavors. It includes:

- EM showers
- Hadronic showers
- Neutral Current Interactions

Cosmic accelerator
 $\nu_e: \nu_{\mu}: \nu_{\tau} = 1: 2: 0$ After propagation
 $\nu_e: \nu_{\mu}: \nu_{\tau} = 1: 1: 1$

The size of these showers is \sim 10 m in ice, which is small with respect to the spacing of PMTs.

They represent a **point source of Cherenkov photons** radiated by shower particles

Detection of all flavors has become important:

Sky region in which TXS 0506+056 is located is observed through Earth

Approximately **70000 neutrino-induced muon** tracks are recorded each year from that emisphere:

- 1% from astrophysical sources
- Background neutrinos with median energy 1 TeV

A **high-significance point-source** detection can require from **2 to 30** signals over background, depending on:

- Energy spectrum
- Clustering in time

Sky region in which TXS 0506+056 is located is observed through Earth

Approximately **70000 neutrino-induced muon** tracks are recorded each year from that emisphere:

- 1% from astrophysical sources
- Background neutrinos with median energy 1 TeV

A high-significance point-source detection can require from 2 to 30 signals over background, depending on:

- Energy spectrum
- Clustering in time

1. IceCube-170922A

An up-going muon track was sent out as an alert Probable neutrino energy $E_{\nu} \sim 290~TeV$ TXS 0506+056 was found at 0.1° distance Post-trial chance of coincidence: $3-3.5~\sigma$

R.A. (dearees)

Known radio (red) and X-ray (blue) emitters near IceCube-170922A

Matteo Feltre

Sky region in which TXS 0506+056 is located is observed through Earth

Approximately **70000 neutrino-induced muon** tracks are recorded each year from that emisphere:

- 1% from astrophysical sources
- Background neutrinos with median energy 1 TeV

A high-significance point-source detection can require from 2 to 30 signals over background, depending on:

- Energy spectrum
- Clustering in time
- 2. Archival data Search (2014-15)

Analysis

Power law energy spectrum $E^{-\gamma}$ is assumed Parameters:

- 1. Spectral index γ
- 2. Flux normalization at 100 TeV ϕ_{100}
- 3. Time window T_w
- 4. Starting point T_0

Time integrated analysis (9.5 yr sample)

- $\phi_{100} = (0.8^{+0.5}_{-0.4}) \times 10^{-16} \text{ TeV}^{-1} \text{cm}^{-2} \text{s}^{-1}$
- $\gamma = 2.0 \pm 0.3$

The **excess is not significant** due to background in the first 7 year period of data taking

Sky region in which TXS 0506+056 is located is observed through Earth

Approximately **70000 neutrino-induced muon** tracks are recorded each year from that emisphere:

- 1% from astrophysical sources ٠
- Background neutrinos with median energy 1 TeV

A high-significance point-source detection can require from 2 to 30 signals over background, depending on:

- Energy spectrum
- Clustering in time
- 2. Archival data Search (2014-15)

Analysis

Power law energy spectrum $E^{-\gamma}$ is assumed **Parameters:**

- Spectral index γ 1.
- Flux normalization at 100 TeV ϕ_{100}
- Time window T_{w} 3.
- Starting point T_0 4.

Time integrated analysis (9.5 yr sample)

- $\phi_{100} = (0.8^{+0.5}_{-0.4}) \times 10^{-16} \text{ TeV}^{-1} \text{cm}^{-2} \text{s}^{-1}$
- $\gamma = 2.0 \pm 0.3$

The **excess is not significant** due to background in the first 7 year period of data taking

Time dependent analysis

 $\log_{10} p$

Matteo Feltre

 $\frac{dN_{astro}}{\sim} \sim E^{-2}$

 $\frac{dN_{bkg}}{dM_{bkg}} \sim E^{-3.7}$

TXS 0506+056

dE

dE

IC170922A 50%

IC170922A 909

6.6

Declination 5.8° 5.4°

5.0°

The signal identified during the 5 month period in 2014/15 consists of 13 ± 5 muon induced signals over background Redshift measurements: z=0.34 Total neutrinos fluence ~ $3 \times E^2 J_{100} \rightarrow (4.2^{+2.0}_{-1.4} \times 10^{-3}) \text{ erg cm}^{-2}$

Given the distance, the isotropic neutrino luminosity $L_{\nu} = (1.2^{+0.6}_{-0.4}) \times 10^{47} \text{erg s}^{-1}$ over 158 days

 $E^2 J_{100} = (2.1^{+0.9}_{-0.7}) \times 10^{-4} \text{ TeV cm}^{-2}$

From Fermi-LAT observations, the isotropic gamma ray luminosity is $L_{\gamma} = 0.28 \times 10^{47} erg \, s^{-1}$ in the range 0.1-100 GeV What happens to photons related to neutrino production mechanisms?

- Absorption
- Photons have energy outside Fermi-LAT energy band

The signal identified during the 5 month period in 2014/15 consists of 13 ± 5 muon induced signals over background Redshift measurements: z=0.34 Total neutrinos fluence ~ $3 \times E^2 J_{100} \rightarrow (4.2^{+2.0}_{-1.4} \times 10^{-3}) \text{ erg cm}^{-2}$ $E^2 J_{100} = (2.1^{+0.9}_{-0.7}) \times 10^{-4} \text{ TeV cm}^{-2}$

Given the distance, the isotropic neutrino luminosity $L_{\nu} = (1.2^{+0.6}_{-0.4}) \times 10^{47} \text{erg s}^{-1}$ over 158 days

From Fermi-LAT observations, the isotropic gamma ray luminosity is $L_{\gamma} = 0.28 \times 10^{47} erg \ s^{-1}$ in the range 0.1-100 GeV What happens to photons related to neutrino production mechanisms?

- Absorption
- Photons have energy outside Fermi-LAT energy band

Why TXS0506+056 is the first blazar to be associated with neutrino emissions?

1. It is one of the most luminous sources in the Universe. Markarians blazar have the same luminosity but $z \sim 0.034$

The signal identified during the 5 month period in 2014/15 consists of 13 ± 5 muon induced signals over background Redshift measurements: z=0.34 Total neutrinos fluence ~ $3 \times E^2 J_{100} \rightarrow (4.2^{+2.0}_{-1.4} \times 10^{-3}) \text{ erg cm}^{-2}$

Given the distance, the isotropic neutrino luminosity $L_{\nu} = (1.2^{+0.6}_{-0.4}) \times 10^{47} \text{erg s}^{-1}$ over 158 days

From Fermi-LAT observations, the isotropic gamma ray luminosity is $L_{\nu} = 0.28 \times 10^{47} erg \ s^{-1}$ in the range 0.1-100 GeV What happens to photons related to neutrino production mechanisms?

- Absorption
- Photons have energy outside Fermi-LAT energy band

- 1. It is one of the most luminous sources in the Universe. Markarians blazar have the same luminosity but $z \sim 0.034$
- Follow-up measurements from MAGIC detected gamma rays with $E > 100 \ GeV$ five days after

The signal identified during the 5 month period in 2014/15 consists of 13 ± 5 muon induced signals over background Redshift measurements: z=0.34 Total neutrinos fluence ~ $3 \times E^2 J_{100} \rightarrow (4.2^{+2.0}_{-1.4} \times 10^{-3}) \text{ erg cm}^{-2}$

Given the distance, the isotropic neutrino luminosity $L_{\nu} = (1.2^{+0.6}_{-0.4}) \times 10^{47} \text{erg s}^{-1}$ over 158 days

From Fermi-LAT observations, the isotropic gamma ray luminosity is $L_{\gamma} = 0.28 \times 10^{47} erg \ s^{-1}$ in the range 0.1-100 GeV What happens to photons related to neutrino production mechanisms?

- Absorption
- Photons have energy outside Fermi-LAT energy band

- 1. It is one of the most luminous sources in the Universe. Markarians blazar have the same luminosity but $z \sim 0.034$
- Follow-up measurements from MAGIC detected gamma rays with $E > 100 \ GeV$ five days after 2.
- Radio interferometry revealed a jet that loses its tight collimation beyond 5 milliarcseconds running into matter 3. Merging with another galaxy? Interaction of jet with dense molecular clouds of a star-forming region? Interaction with supermassive stars in the central region?

 $E^2 J_{100} = (2.1^{+0.9}_{-0.7}) \times 10^{-4} \text{ TeV cm}^{-2}$

Eddington bias

Since the cross section for neutrinos is very small, what can we conclude if we see one of them related to a known source?

Idea:

if a newspaper write an article about a win at the lottery the perception is that the probability is high. We have to consider the large quantity of trials.

The neutrino sources are systematically overestimated!

Quantification of the bias

Sources detection probability depends on:

• Density, evolution and luminosity function, acceptance of the detector **Simulation**

```
Sources are considered equally luminous Constant density: 8 \times 10^{-9} \text{ Mpc}^{-3}
Total # of sources: 1.2 \times 10^4
```


- Expected flux is normalized to 10 events
- The median flux of a source detected with a single event is much smaller than one expected event
- Many fainter sources have a higher probability of producing such a signal

Eddington bias

Since the cross section for neutrinos is very small, what can we conclude if we see one of them related to a known source?

Idea:

if a newspaper write an article about a win at the lottery the perception is that the probability is high. We have to consider the large quantity of trials.

The neutrino sources are systematically overestimated!

Quantification of the bias

Sources detection probability depends on:

Density, evolution and luminosity function, acceptance of the detector Simulation

- Expected flux is normalized to 10 events
- The median flux of a source detected with a single event is much smaller than one expected event
- Many fainter sources have a higher probability of producing such a signal
- For sources detected with just a single event there is a strong discrepancy between the real flux (red bands) and the Poisson estimate (blue bands)
- Flux might be orders of magnitude smaller!
- Bias decreases with more neutrinos detected

Matteo Feltre

Results for Neutrino Astrophysics

An hard spectrum for neutrino flux is expected from models of CR production at sources

- 1. The spectrum obtained from events originating in the Northern sky gives $\Gamma_{\!\nu}\sim 2.2$
- 2. HESE presents a softer spectrum, with $\Gamma_{\!\nu}\sim 2.9$

The source of discrepancy is still an open question!

- Two different extragalactic components?
- Galactic+Extragalactic component?
- Statistical fluctuations?

3. ANTARES complements IceCube field of view. A recent study shows a small excess of events w.r.t. background only predictions. Best fit is $\Gamma_{\nu} \sim 2.9^{+0.5}_{-0.4}$

$$\phi_{\nu}(E) \propto E^{-\Gamma_{\nu}}$$
 with $\Gamma_{\nu} = 2$

Next Steps (I)

The search for UHE neutrinos will be continued with a new generation of detectors, as:

1. IceCube Gen-2

Designed to achieve five times better sensitivity than IceCube array

• Optical Array:

8x larger active volume w.r.t. IceCube filled with improved OM from IceCube upgrade

• Surface air shower array:

Matching with the optical array throughput 40x higher coincidence events

• Radio array:

 $500\ km^2$ of the antenna array for detection of $10^{18}\ eV$ neutrinos

New Optical module design

Multi-PMTs per module
 Larger photocatode area
 Increased angular acceptance

Matteo Feltre

Next Steps (II)

The search for UHE neutrinos will be continued with a new generation of detectors, as:

ANTARES: Precursor of KM3Net 14 years of operation Competitive results for Northern emisphere

2. KM3Net

Multi-site deep-sea neutrino telescope: ARCA and ORCA

- Same technology: Digital Optical modules (31 PMTs each)
- ARCA:

Capo Passero (Sicily) at 3.5 km of depth Studies of Astrophysical neutrino sources

• ORCA:

Toulon (France) at 2.5 km of depth Studies on neutrino oscillations and mass ordering

- Distance of strings: ARCA: 90 m ORCA: 20 m
- Distance of DOMs:

ARCA: 35 m ORCA: 9 m

New Optical module design

• Multi-PMTs per module Larger photocatode area Increased angular acceptance

Thanks for your attention!

Neutrinos from Blazars

For a population of sources with **source density** ρ and neutrino luminosity L_{ν} , the diffuse neutrino flux is:

AE

From Halzen, Francis, and Ali Kheirandish. "IceCube and High-Energy Cosmic Neutrinos." arXiv preprint arXiv:2202.00694 (2022).

Integration over redshift history of the source

- Considering:
- Duration of flares Δt
- Total time of observation T_{obs}
- Fraction of sources F

$$3 \times 10^{-11} \text{TeVcm}^{-2} \text{s}^{-1} \text{sr}^{-1} = \frac{F}{4\pi} \left(\frac{R_{\text{H}}}{4.3 \text{Gpc}} \right) \left(\frac{\xi}{0.7} \right) \left(\frac{L_{\nu}}{1.2 \times 10^{47} \text{erg s}^{-1}} \right) \left(\frac{\rho}{10^{-8} \text{Mpc}^{-3}} \right) \left(\frac{\Delta t}{110 \text{d}} \times \frac{10 \text{yr}}{T_{\text{obs}}} \right)$$

From which we can conclude that $F\sim 0.05$

The energetics in neutrino production from these sources match the energy flux of

a 1

 $E^{2}\frac{dN}{dE} = \frac{1}{4\pi}\int d^{3}r \frac{L_{\nu}}{4\pi r^{2}}\rho = \frac{c}{4\pi}t_{H}\xi L_{\nu}\rho$

the highest energy cosmic rays:

$$E^{2} \frac{dN}{dE} \sim \frac{c}{4\pi} \frac{1}{2} (1 - e^{-f_{\pi}}) \xi t_{H} \frac{dE}{dt}$$

$$Dbserved cosmic rays injection rate: (1 - 2) \times 10^{44} \text{erg Mpc}^{-3} \text{yr}^{-1}$$

$$\frac{\xi}{5} \left(\frac{\xi}{0.7} \right) \left(\frac{L_{\nu}}{1.2 \times 10^{47} \text{erg s}^{-1}} \right) \left(\frac{\rho}{10^{-8} \text{Mpc}^{-3}} \right) \left(\frac{\Delta t}{110d} \times \frac{10 \text{yr}}{T_{\text{obs}}} \right) \sim \frac{1}{2} (1 - e^{-f_{\pi}}) \frac{dE}{dt} \frac{1}{(1 - 2) \times 10^{44} \text{erg Mpc}^{-3} \text{yr}^{-1}}$$

 $E^2 \frac{dN}{dR} = \frac{c}{4} t_H \xi L_v \rho \frac{\Delta t}{R} F$

Pion production efficiency at source is $f_\pi \sim 0.8$

4. Robotic optical telescope MASTER monitored the blazar since 2005. It found that the strongest variation in a period of two hours happened after IC170922 and 2014-15 burst

If we consider 1-10% of blazars bursting once in 10 years like TXS0506+056, the diffuse cosmic neutrino flux observed by IceCube would be explained

IC190730 and IC170922

Alert recorded on 30th July 2019 provides support for the idea that cosmic neutrinos are produced by temporarily gamma-suppressed blazars:

- 300 TeV muon neutrino in spatial coincidence with blazar PKS 1502+106
- From OVRO, neutrino is in coincidence with the highest flux density of a flare started 5 years ago
- Clear minimum in gamma ray flux seen by Fermi

Blazar Classification

