Technical challenges and realizations of quantum qubits: the example of superconducting charge qubits

Author: Arthur Vesperini

University of Siena

The Sycamore processor [F. Arute et al, 2019]

The challenges

- Scalability
- Protected from decoherence (large relaxation time T_1 and dephasing time $\mathrm{T}_2^{}$)
- Protected from noise
- Implementation of single-qubit and two-qubit quantum gates
- Measurement apparatus

 $\hat{H}=Q^2/2C+\Phi^2/2L$

 $\hat{H}=Q^2/2C+\Phi^2/2L$

[D.Bernal et al. , 2020]

Superconducting qubits: the Cooper Pair Box (CPB) $\hat{H} = E_C(\hat{n} - n_q)^2 - E_J \cos(\hat{\varphi})$

$$
\hat{Q}=(2e)^2(\hat{n}-n_g)^2
$$

Superconducting qubits: the Cooper Pair Box (CPB)
\n
$$
\hat{H} = -E_J \sum_n \left(|n+1\rangle\langle n| + |n\rangle\langle n+1| \right)
$$
\n
$$
\xrightarrow{\text{Superconducting island}^*} + E_C \sum_n (n - n_g)^2 |n\rangle\langle n|
$$
\n
$$
E_C = (2e)^2 / 2C_{\Sigma}
$$
\n
$$
n_g = C_g V_g / 2e
$$

Superconducting qubits: the Cooper Pair Box (CPB) $\hat{H}=-E_J\sum_n\Big(|n+1\rangle\langle n|+|n\rangle\langle n+1|\Big)$ $+ E_C \sum_n (n - n_g)^2 |n\rangle\langle n|$

To obtain a qubit: tuning of $\boldsymbol{\mathrm{E}}_\mathrm{c}$ and $\boldsymbol{\mathrm{n}}_\mathrm{g}$ to maximize anharmonicity $\alpha = \Delta E_{12} - \Delta E_{01}$

[J.Koch et al., 2007]

 $E_J \sim constant$ $E_C=(2e)^2/2C_{\Sigma}$ $n_q = C_q V_q/2e$

$$
\begin{aligned} \hat{H} &= -E_J \Big(|1\rangle\langle 0| + |0\rangle\langle 1| \Big) \\ &+ E_C \Big(n_g^2 |0\rangle\langle 0| - (1 - n_g)^2 |1\rangle\langle 1| \Big) \end{aligned}
$$

$\hat{H} = K(n_g)\mathbb{I} - E_c(n_g-1/2)\sigma_z + E_J\sigma_x/2$

$$
\hat{H} = K(n_g)\mathbb{I} - E_c(n_g-1/2)\sigma_z + E_J\sigma_x/2
$$

n_g can be used as a control to change the nature of H, henceforth implementing single-qubit quantum gates:

$$
\hat{H} = K(n_g)\mathbb{I} - E_c(n_g-1/2)\sigma_z + E_J\sigma_x/2
$$

n_g can be used as a control to change the nature of H, henceforth implementing single-qubit quantum gates:

- $\,$ adiabatic change (e.g. from $\rm n_{\rm g}^{\,=0}$ to $\rm n_{\rm g}^{\,=1\!\!/2}$ to obtain |+>)

$$
\hat{H} = K(n_g)\mathbb{I} - E_c(n_g-1/2)\sigma_z + E_J\sigma_x/2
$$

n_g can be used as a control to change the nature of H, henceforth implementing single-qubit quantum gates:

- adiabatic change (e.g. from $n_g=0$ to $n_g=$ ½ to obtain $\mid +\rangle$)
- fast change of n_g leads to Rabi-like dynamics; then we control the onset time t to obtain the desired state.

Problem: sensitivity to charge noise, affecting the value of $\mathrm{n}_{\mathrm{g}}^{\mathrm{}}$, inducing small dephasing time $\mathrm{T}_2^{}$.

In the transmon regime, $\mathrm{E_{y}/E_{c}}$ is tuned so that $\mathrm{E}(\mathrm{n}_\mathrm{g})$. dispersion becomes negligible, and some hanarmonicity is preserved. n g becomes irrelevant.

[J.Koch et al. , 2007]

In practice, $\rm E_c$ is tuned by increasing total capacitance.

[T. Roth et al. , 2021]

[T. Roth et al., 2021]

In practice, $\rm E_c$ is tuned by increasing total capacitance.

New problem is the weak anharmonicity: risks of leakage. Pulse shaping allows fast transitions with fine frequency control.

The transmon qubits can be coupled (entangled), through a resonator, which is expressed by a Jaynes-Cummings Hamiltonian:

$$
\hat{H} = \hat{H}_r + \textstyle\sum_{j=1,2}\hat{H}_j + \textstyle\sum_{j=1,2}g(a^{\dagger}\sigma_j^{-} + a\sigma_j^{+})
$$

The transmon coupled to a circuit resonator can be expressed, after some manipulations, by a (approximated) Jaynes-Cummings Hamiltonian:

$$
\begin{aligned} \hat{H} &= (\omega_r - \chi |1\rangle\langle 1| + \chi |0\rangle\langle 0|)a^\dagger a \\ &+ (\omega_1 + \chi)\sigma_z \end{aligned}
$$

The transmon coupled to a circuit resonator can be expressed, after some manipulations, by a (approximated) Jaynes-Cummings Hamiltonian:

$$
\begin{aligned} \hat{H} &= (\omega_r - \chi |1\rangle\langle 1| + \chi |0\rangle\langle 0|)a^\dagger a \\ &+ (\omega_1 + \chi)\sigma_z \end{aligned}
$$

The resonator frequency depends on the transmon state; it is then measured by microwave spectroscopy.

Superconducting qubits: advantages

- Easy to embed into a larger circuit
- 1D junctions effectively smaller than 3D cavity
- Easy control transition frequencies: protection from thermal noise
- Macroscopic quantum state with high coupling strength
- Straightforward measurement

Arute, Frank, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, et al. 'Quantum Supremacy Using a Programmable Superconducting Processor'. Nature 574, no. 7779 (24 October 2019): 505-10. https://doi.org/10.1038/s41586-019-1666-5.

Bernal, David E., Sridhar Tayur, and Davide Venturelli. 'Quantum Integer Programming (QuIP) 47-779: Lecture Notes'. arXiv, 11 January 2021. http://arxiv.org/abs/2012.11382.

Hanneke, D., J. P. Home, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland. 'Realization of a Programmable Two-Qubit Quantum Processor'. Nature Physics 6, no. 1 (January 2010): 13-16. https://doi.org/10.1038/nphys1453.

Koch, Jens, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. 'Charge-Insensitive Qubit Design Derived from the Cooper Pair Box'. Physical Review A 76, no. 4 (12 October 2007): 042319. https://doi.org/10.1103 /PhysRevA.76.042319.

Langford, Nathan K. 'Circuit QED - Lecture Notes'. arXiv, 7 October 2013. http://arxiv.org /abs/1310.1897.

Nakamura, Y., Yu. A. Pashkin, and J. S. Tsai. 'Coherent Control of Macroscopic Quantum States in a Single-Cooper-Pair Box'. Nature 398, no. 6730 (April 1999): 786-88. https://doi.org/10.1038/19718. Roth, Thomas E., Ruichao Ma, and Weng C. Chew. 'An Introduction to the Transmon Qubit for Electromagnetic Engineers'. arXiv, 21 June 2021. http://arxiv.org/abs/2106.11352.

Thank you.