Technical challenges and realizations
of quantum qubits: the example of
superconducting charge qubits

Author: Arthur Vesperini 7 4 \ .

University of Siena

"
>

The Sycamore processor [E Arute et al, 2019]




The challenges
Scalability

Protected from decoherence (large relaxation time T, and
dephasing time T,)

Protected from noise
Implementation of single-qubit and two-qubit quantum gates

Measurement apparatus



Superconducting qubits: the Cooper Pair Box (CPB)
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Superconducting qubits: the Cooper Pair Box (CPB)
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Superconducting qubits: the Cooper Pair Box (CPB)
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To obtain a qubit:

tuning of E_and n to by ~ constant
maximize

anharmonicity Eo = (26)2/202
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[J.Koch et al. , 20071



Superconducting qubits: the Cooper Pair Box (CPB)
A = B, ([1)(0] + [0)(1])

+ Eo (n3[0)(0] — (1 - ng)?[1)(1])



Superconducting qubits: the Cooper Pair Box (CPB)
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Superconducting qubits: the Cooper Pair Box (CPB)
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n_can be used as a control to change the nature of H,
henceforth implementing single-qubit quantum gates:
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Superconducting qubits: the Cooper Pair Box (CPB)

H=K(ny)l—E.(n, —1/2)0, + Ejo,/2

n_can be used as a control to change the nature of H,
henceforth implementing single-qubit quantum gates:

- adiabatic change (e.g. from n=0ton =V to obtain |+>)

- fast change of n, leads to Rabi-like dynamics; then we
control the onset time t to obtain the desired state.
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Superconducting qubits: the Cooper Pair Box (CPB)

Problem: sensitivity to charge noise, affecting the value of n,
inducing small dephasing time T, .
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Superconducting qubits: the Transmon

In the transmon
regime, E /EC is tuned
so that E(n )
dispersion becomes
negligible, and some
hanarmonicity is
preserved.

n, becomes
irrelevant.

[J.Koch et al. , 20071
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Superconducting qubits: the Transmon

In practice, E . is
tuned by increasing
total capacitance.

[T. Roth et al. , 2021]
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Superconducting qubits: the Transmon

[T. Roth et al. , 2021]

In practice, E . is
tuned by increasing
total capacitance.

New problem is the

weak anharmonicity:

risks of leakage.
Pulse shaping allows
fast transitions with
fine frequency
control.
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Superconducting qubits: the Transmon

The transmon qubits can be coupled (entangled), through a
resonator, which is expressed by a Jaynes-Cummings
Hamiltonian:

H = H,,, e ijl,z fI‘7 ~+- ijl,Z g(a,TO']— + CLO';—)
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Superconducting qubits: the Transmon

The transmon coupled to a circuit resonator can be expressed,
after some manipulations, by a (approximated)
Jaynes-Cummings Hamiltonian:

H = (w, — x|1){1] + x[0)(0])ala
-+ (wl +X)Jz
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Superconducting qubits: the Transmon

The transmon coupled to a circuit resonator can be expressed,
after some manipulations, by a (approximated)
Jaynes-Cummings Hamiltonian:

H = (wr — x[1)(1] + x[0)(0])ala
-+ (wl +X)Jz

The resonator frequency depends on the transmon state; it is
then measured by microwave spectroscopy.
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Superconducting qubits: advantages

\

Easy to embed into a larger circuit

\

1D junctions effectively smaller than 3D cavity

L\

Easy control transition frequencies: protection from thermal noise

Macroscopic quantum state with high coupling strength

\

Straightforward measurement
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Thank you.



