Quantum entanglement as a tool for securing communications in the post-quantum era

the E91 protocol

PhD Student Marco Mattiazzi

Università di Siena

December 19, 2022

Low-energy seminar

Outline

I. Essentials of cryptography: the Key Distribution Problem

II.Theory & results behind entanglement-based QKD protocols

III.E91 protocol

IV.Experimental realizations of entanglement-based QKD protocols

Part 1: Basic notions of cryptography

Key Distribution Problem

Shannon's lemma

An encryption scheme (Enc, Dec) can only be secure and correct if the number of keys K is at least as large as the number of possible messages M

 $K > M$

Communication theory of secrecy systems

Claude E. Shannon

Shannon's lemma

An encryption scheme (Enc, Dec) can only be secure and correct if the number of keys K is at least as large as the number of possible messages M

 $K > M$

Q: do we know a secure and correct encryption scheme?

Shannon's lemma

An encryption scheme (Enc, Dec) can only be secure and correct if the number of keys K is at least as large as the number of possible messages M

 $K > M$

Q: do we know a secure and correct encryption scheme? A: Yes, see next slide

One-Time Pad

Message $\mathbf{m} \in \{0,1\}^n$ and keys $\mathbf{k} \in \{0,1\}^n$ are string of n-bits

• Encryption function **XOR** $A \oplus B$ $\text{Enc}: [\mathbf{k}, \mathbf{m}] \longmapsto \mathbf{c} = \mathbf{m} \oplus \mathbf{k}$ B Out Decryption function Ω $Dec : [\mathbf{k}, \mathbf{c}] \longmapsto \mathbf{m} = \mathbf{c} \oplus \mathbf{k}$ **Requirements for keys** • uniformly distributed • used once

Main Problem: key distribution in a *secure* way $\int_{3/19}$

Part 2: Theory & results behind the entanglement-based QKD protocols

EPR-Bell states

Maximally entangled two-qubit basis

$$
\begin{aligned} \ket{\Phi^+}&=\frac{1}{\sqrt{2}}(\ket{00}+\ket{11})\\ \ket{\Psi^+}&=\frac{1}{\sqrt{2}}(\ket{01}+\ket{10})\\ \ket{\Phi^-}&=\frac{1}{\sqrt{2}}(\ket{00}-\ket{11})\\ \ket{\Psi^-}&=\frac{1}{\sqrt{2}}(\ket{01}-\ket{10}) \end{aligned}
$$

Quantum circuit to generate EPR-pairs

Polarization-entangled photon pairs

Credit: Christophe Couteau (2018) Spontaneous parametric downconversion, Contemporary Physics, 59:3, 291-304,

Credit: C. Erven (2007) Free Space Quantum Key Distribution and its Implementation with a Polarization-Entangled Parametric Down Conversion Source

EPR(B)- gedankenexperiment scheme

Credit: https://physics.aps.org/articles/v8/123

Source of EPR-pairs

$$
|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)
$$

orientations **a**, **b** lie on *x-y plane particle's trajectories*

Correlation coefficient

$$
E_{|\Phi^+\rangle}(\mathbf{a},\mathbf{b}) = \langle \Phi^+|A(\mathbf{a}) \otimes B(\mathbf{b})| \Phi^+ \rangle
$$

= $P_{++}(\mathbf{a},\mathbf{b}) + P_{--}(\mathbf{a},\mathbf{b}) - P_{+-}(\mathbf{a},\mathbf{b}) - P_{-+}(\mathbf{a},\mathbf{b})$
= $\cos 2\mathbf{a} \cdot \mathbf{b}$

CHSH inequality a.k.a. **Generalized**

Bell's theorem

2022

$$
\mathbf{S} = E(\mathbf{a}_1, \mathbf{b}_1) - E(\mathbf{a}_1, \mathbf{b}_2) + E(\mathbf{a}_2, \mathbf{b}_1) + E(\mathbf{a}_2, \mathbf{b}_2)
$$

Part 3: the E91 protocol

Ekert Protocol (E91)

PHYSICAL REVIEW **LETTERS**

IE 67

5 AUGUST 1991

Quantum Cryptography Based on Bell's Theorem

Artur K. Ekert

Merton College and Physics Department, Oxford University, Oxford OX1 3PU, United Kingdom (Received 18 April 1991)

Practical application of the generalized Bell's theorem in the so-called key distribution process in cryptography is reported. The proposed scheme is based on the Bohm's version of the Einstein-Podolsky-Rosen gedanken experiment and Bell's theorem is used to test for eavesdropping.

NUM

Ekert Protocol (E91): configuration

Alice

analyzer randomly oriented between ${a_1, a_2, a_3}$

$$
\overrightarrow{a_3}
$$
\n
$$
\overrightarrow{a_2}
$$
\n
$$
\overrightarrow{a_1}
$$

such that
$$
\phi_a^1 = 0^\circ
$$
, $\phi_a^2 = 45^\circ$, $\phi_a^3 = 90^\circ$

Bob

analyzer randomly oriented between ${b_1, b_2, b_3}$

 $10/19$

O for compatible bases a_2 , b_1 and a_3 , b_2 there is **total correlation**, $E(a_2, b_1) = E(a_3, b_2) = 1$

```
2 for incompatible bases, one can compute
S = E(a_1, b_1) - E(a_1, b_3) + E(a_3, b_1) + E(a_3, b_3)
```
additional public channel (C_{pub}) is available

Ekert Protocol (E91): implementation

Step 1 Alice and Bob perform N measurements (run) and store both the experimental result (λ_A or λ_B) and the analyzer's orientation (a_i or b_i)

Ekert Protocol (E91): implementation

Step 2 Alice and Bob communicate in public (C_{pub}) the selected orientations

Ekert Protocol (E91): implementation

Step 3 Alice and Bob keep secret the results of their measurements performed in compatible bases, whereas they share the outcomes in incompatible bases

14/19

Advanced Steps

• evaluation of quantum bit error rate (QBER) sharing small sample of the key

Classical post-processing

- error reconciliation
- privacy amplification

Summary of E91 protocol

- The presence of an *eavesdropper* (Eve) along the channel is detected testing the *violation* of CHSH inequality. Indeed Eve disturbs the system to gain information on it, lowering the degree of correlations below the classical bound
- The key generation part is independent on the testing procedure, thus no information leakage occurs in the testing part
- The security of the key distribution, as in all QKD protocols, does not depend on the computational complexity of the task but on fundamental laws of physics \rightarrow suitable for the coming of quantum computers with sufficiently large numbers of qubits (the so-called post-quantum era)

"It is not a mathematical difficulty of a particular computation, but a fundamental physical law that protects the system, and as long as quantum theory is not refuted as a complete theory the system is secure"

from Ekert PRL paper

Part 4: Experimental realizations of entanglement-based QKD

E91 protocol with quantum gates

First report of complete entanglement-based QKD system over dedicated optical fibers

The new frontier: space-based QKD

Entanglement-based secure quantum cryptography over 1,120 kilometres

Juan Yin, Yu-Huai Li, Sheng-Kai Liao, Meng Yang, Yuan Cao, Liang Zhang, Ji-Gang Ren, Wen-Qi Cai, Wei-Yue Liu, Shuang-Lin Li, Rong Shu, Yong-Mei Huang, Lei Deng, Li Li, Qiang Zhang, Nai-Le Liu, Yu-Ao Chen, Chao-Yang Lu, Xiang-Bin Wang, Feihu Xu, Jian-Yu Wang, Cheng-Zhi Peng ⊠, Artur K. Ekert & Jian-Wei Pan \triangleright

Nature 582, 501-505 (2020) Cite this article

from abstract demonstrate entanglement-based QKD between two ground stations separated by 1,120 kilometres at a finite secret-key rate of 0.12 bits per second, without the need for trusted relays. Entangled photon pairs were distributed via two

CHSH violation

 2.56 ± 0.07

Bit rate [bps]

0.12

Thanks for your attention