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1 Introduction

Electromagnetic induction imaging consists in obtaining a map of a quantity related to the
electric permittivity ε, the magnetic permeability µ or the electric conductivity a σ of an object.
A variety of different techniques are used to acquire these images, one of the first example is
[1]. Here we focus on a image acquired using a radio-frequency cold atom magnetometer.
In this case, a cloud of cold 85Rb atoms, released from a MOT at a temperature T∼100µK,
are optically pumped along a static bias magnetic field ~B0 = B0x̂ in the ground state of
maximum magnetic moment. An oscillating magnetic field ~BRF = A cos (ωt + α)ẑ orthogonal
to ~B0 induces the Larmor precession of the polarized atoms with angular frequency ω0 = γB0

(γ is the gyromagnetic factor) hence a transverse polarization Sx, oscillating with an angular
frequency ω0, is generated. This transverse polarization induces the Faraday rotation of the
linear polarization of a probe laser beam that is detected with a polarimeter whose output is
a time depending signal that, in the steady state, can be written as [2]:

s(t) =
1
2

S0BRF
T2 cos (ωt + α) + (ω − ω0)T2

2 sin (ωt + α)

1 + (γBRF/2)2T1T2 + (ω − ω0)2T2
2

(1)

where T1 and T2 are respectively the longitudinal and transverse lifetimes of the spin
polarization. Defining δ = (1/T2)

√
1 + (γBRF/2)2T1T2 and casting all the multiplicative factors

in one costant A eq. 1 can be written as

s(t) = A
δ cos (ωt + α) + (ω − ω0)δT2 sin (ωt + α)

δ2 + (ω − ω0)2 (2)

The lock-in amplifier multiplies the signal in eq. 1 by cos (ωt + φ) and sin (ωt + φ) and
integrate the results of the multiplication over a time longer than the period of the oscillation
(the phaseφ can be chosen arbitrarily) . The results are two signals: the in-phase component i.e.
the term proportional to cos (ωt) and the in-quadrature component i.e. the term proportional
to sin (ωt) called respectively the x and y channels (chx and chy). The chx and chy channels
can then be written as:

chx(φ) =
A
2
δ cos (α − φ) − (ω − ω0)δT2 sin(α − φ)

(ω − ω0)2 + δ2 (3)

chy(φ) = −
A
2
δ sin (α − φ) + (ω − ω0)δT2 cos(α − φ)

(ω − ω0)2 + δ2 (4)

Changing the phase φ the chx and the chy channels can be exchanged, but two new terms
can be constructed: the amplitude channel:

amp =
√

chx2 + chy2 =
A
2

√
δ2 + (ω − ω0)2δ2T2

2

(ω − ω0)2 + δ2 (5)

and the phase channel. The amplitude channel is independent by the difference (α − φ).
If α = φ the chx channel has the form:

chx(ω) =
A
2

δ

δ2 + (ω − ω0)2 (6)

that is proportional to a Cauchy distribution.
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Figure 1: An example of the signal recorded from the polarimeter.
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Figure 2: An example of the two channels of the lock-in as a function of ω.

If a conducting object is placed in between the source of ~BRF and the atoms, the total
magnetic field at the cloud position is the sum of ~BRF and ~BEC, the field produced by the
eddy currents induced on the object by ~BRF itself and the total magnetic field changes in both
amplitude and phase with respect to ~BRF. If these changes are recorded while the object is
moved in the x − y plane over the MOT an electromagnetic induction image can be recorded.

2 Magnetometer characterization

In fig. 1 is reported an example of the signal produced by the polarimeter, as it can be seen,
the amplitude of the signal decays in time as a consequence of, among other factors, the
expansion and fall of the atoms. In this situation the equations eq. 3 and eq. 4 are no longer
time independent and the channels of the lock-in amplifier are averaged over the acquisition
time. In order to characterize the magnetometer, the output of the two channels of the lock-in
are recorded as a function of the angular frequency ω of ~BRF. In particular, if (α − φ) = 0,
the chx channel output should have a shape given by eq. 3 that is proportional to a Cauchy
distribution and that permits to find the central frequency and the width of the magnetic
resonance.

A Cauchy probability density function is determined by two parameters: the location
parameter ω0 and the scale parameter δ. This p.d.f. has infinite mean and variance and does
not have sufficient statistics for its parameters. Despite that we have to find the width of the
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Figure 3: An example of the two channels of the lock-in as a function of ω.

magnetic resonance and its resonance frequency in order to characterize the magnetometer,
so we have to determine both the scale parameter and the location of the Cauchy distribution
eq. 3.

An example of the data acquired form both the chx and chy channels of the lock-in
amplifier is reported in fig. 2. Each point is the average over 5 acquisitions, the values on
the x axis (the frequencies) are considered exact while the errors on the y axis are estimated
calculating the standard deviation of the 5 measurements.

In order to determine the resonance frequency and the width of the magnetic resonance,
we used a commercial mathematical software that has a built-in function for calculating the
fit of a curve. The results obtained by an unweighted fitting procedure using the function in
eq. 3 are: A = 0.0179, δ = 1.274, ω0 = 26.949. An example of the resulting fit superimposed
to the data is reported in fig. 3 where it can be seen that the fitted curve doesn’t represent
exactly the data. In order to determine how far the curve is from the experimental data3 we
calculate the statistics

s =

n∑
i=1

( yi − f (xi)
δyi

)2
= 1491 (7)

This statistics is distributed according to a χ2 distribution with 35 degree of freedom (we had
38 points and we determined three parameters) and the probability of obtaining a smaller
value of s is by the integral of χ2

35 between 0 and 1491 giving 1.
As an alternative way of finding a fitting function for the data we used the likelihood.

The likelihood L is the probability of obtaining the measured data given the value of the
parameter. Assuming that the measures are independent we have L(µ, δ) =

∏n
i=1 f (xi|µ, δ)

and is usually used the logarithm of the likelihood

log L =

n∑
i=1

log f (xi|µ, δ). (8)

The values of δ and ω0 that will be choosen are the ones for which log L as a maximum (the A
parameter of eq. 3 is set to 1).

The maximum likelihood method can be problematic for a Cauchy distribution, but in
the case where both the parameters have to be determined it has been proven [3] that the
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Figure 4: Graph of log L(µ, δ) with the maximum found (the black dot).

likelihood has an unique stationary point. The graph of log L over a reasonable interval for
the parameters is reported in fig. 4 together with the maximum found with the mathematical
software. The resulting values found are δ = 1.476 and ω0 = 26.854.

The graph of the fitted function with these parameters is reported in fig. 3. Also in this
case we calculated the χ2 test resulting in s = 3142 and again the probability of finding a
smaller value of s is 1.

3 Analysis of an image background noise

In order to obtain an electromagnetic induced image of a conducting object we set the
frequency of ~BRF at the peak of the magnetic resonance (determined by the constant magnetic
field ~B0) found using the methods described in the previous section. When the magnetometer
is set, we record the value of the amplitude channel of the lock-in amplifier as a function of
the position of the object under examination maintaining fixed the frequency of ~BRF. Given
that the eddy currents induced on the object generate an alternating magnetic field opposite
to ~BRF we expect that the amplitude is reduced if the object is placed between the ~BRF source
and the MOT.

In fig. 6 is reported the image of a 30×30×7 mm3 copper object. It can be seen that in
correspondence of the object the amplitude of the magnetometer response is actually reduced.
The points at the border of the image (in black) where the object is not interposed in between
the ~BRF source and the atoms, are used to analyze the background noise.

The amplitude of the magnetometer response depends on various factors. For example the
ambient magnetic field could change, resulting in a different value of ~B0, hence in a different
resonance frequency and in eq. 5 it can be seen that the amplitude is maximum at resonance.
Another cause can be a different number of atoms trapped in the MOT caused by various
factors as casual misalignment of the lasers or variations of the lasers frequencies. . . etc. In
order to reduce the fluctuations of the system we divide the value of the recorded amplitude
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Figure 5: The image in exam: the dots (red and black) are the points at which the measurements
are done, the black dots are those used for the background noise analysis.
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Figure 6: The cumulative distribution of the empirical distribution and the normal distribution.
The vertical red line is the maximum of dn(xi).

by a number proportional to the fluorescence light emitted by the MOT, in fact, from eq. 1, we
see that the signal amplitude is proportional to the polarization Sx that is due to the number
of polarized atoms interacting with the lasers, and the fluorescence light emitted by the atoms
is again proportional to the number of atoms in the MOT.

In order to verify if the system is stable over the period of time necessary to obtain
an image, we made the assumption that the fluctuations of the amplitude are distributed
according to a normal distribution. This distribution is sampled in the n = 81 points at the
border indicated by balck dots in fig. 6. So we made a Kolomorov-Smirnov test for the H0

hypothesis: data are distributed according to a normal distribution [5]. The data used for
this test are the ones at the border of fig. 6 where we assume that the object is far from the
MOT so that this points can be used as a zero measure.

Given that the mean ad variance of the distribution are unknown, they have to be
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Figure 7: Probability plot of the cumulative empirical distribution.

estimated by the data:

µ =
1
N

N∑
i=1

xi = 0.931 s2 =
1

N − 1

N∑
i=1

(xi − µ)2 = 0.001509 (9)

Posing Fn(x) the cumulative empirical distribution and F(x) the cumulative normal
distribution with mean and variance calculated using eq. 9 we obtain that the maximum
distance between Fn and F is:

dn = sup
n

{∣∣∣F(xi) − Fn(xi)
∣∣∣, ∣∣∣F(xi) − Fn(xi−1)

∣∣∣} = 0.08898 (10)

Since we have estimated the mean and variance of the distribution from the sample, the
statistic t must be evaluated using [4].

t = dn

(√
n − 0.01 +

0.85
√

n

)
= 0.808356. (11)

The p-value can be calculated using the asymptotic Kolomorov distribution:

p − value = 2
∞∑

k=1

(−1)k+1e−2k2t2
(12)

resulting in p=0.531 meaning that the H0 hypothesis can’t be rejected. This calculation is not
entirely correct because eq. 12 can’t be used when the mean and variance of the distribution
are calculated from the data. For this case, the value of t corresponding to the 0.05 significance
is tabulated in [4] as t = 0.895 that is greater than the value we found meaning that the
hypothesis can’t be rejected.

A further evaluation can be done with a normal plot from the expression of the cumulative
distribution:

F(x) =
1
√

2πσ

∫ x

−∞

e−
(y−µ)2

2σ2 dy (13)

after changing variable we obtain:

z =
x − µ
σ
→ G(z) =

1
√

2π

∫ z

−∞

e
y2

2 dy (14)
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and
G−1

(
F(x)

)
= G−1

(
G(z)

)
= z =

x − µ
σ

. (15)

The points
(
xi,G−1(F(xi))

)
are on the line y =

x−µ
σ .

Given that the empirical distribution converges to the true distribution, if in eq. 15 we
substitute F(x) with Fn(xi), we can see how the points

(
xi,G−1(Fn(xi)

)
are placed with respect

to the line in eq. 15. This graph is reported in fig. 7 where it can be seen that the points at the
left and right extremes are those at a greater distance from the normal line.

4 Conclusion

The analysis of the fit procedures for the Cauchy distribution in sec. 1 revealed that the
results obtained are rather poor. Although this result can be due to the underestimation of
the errors in the lock-in output in fig. 3, considering eq. 3 and eq. 4 we see how the shapes of
the curve are determined by the difference (α − φ) but α is the phase angle of the magnetic
field ~BRF while the lock-in amplifier acquires the phase of the current that generates ~BRF,
given that the experiment is mounted over conducting optical tables this can introduce a
frequency dependent phase lag in ~BRF compared to the current resulting in a poor adaptation
of the curve to the data.

From the analysis of the background of an image in sec. 2 it can be concluded that there
are no reasons to confute the hypothesis that the data are normally distributed although there
are some points, at the extremes in fig. 7, far from the line that indicates that are normally
distributed. Given that data are already normalized over the number of atoms captured in
the MOT, the reason for this discrepancy should be searched in the optical pumping process.
In any case the estimate of the variance of the distribution, combined with the techniques
in [5], will provide a sound starting point for an evaluation of the resolution achievable for
images of more complicated objects.
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