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Main objective of this seminar

Aim

Enhance the real-time recognition of astrophysical neutrino burst in a
statistical fashion

Requirements

short-latency −→ prompt alert to ν, EM and GW telescopes

low false alarm rate −→ crucial in the multi-messenger era

How-to

Exploit the different time structure of the signal with respect to the
(poissonian) background
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Application : ν-driven Core-Collapse Supernovae

CCSNe

last stage lifecycle of massive stars

released energy ∼ 1053 erg −→ 99%
emitted as neutrinos

models based on highly complex
simulations but exact mechanism is
still unknown

so far, only ν-bursts from SN1987A
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 bursts from SN1987Aν

Potential scientific outcomes from the next CCSN neutrino detection

neutrino mass limit + mass hierarchy + constraints on BSM physics

unique probe for black-hole forming SNe or other exotic explosions

Real-time detection

guide the optical telescopes to study EM signal from its onset
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Clustering algorithms

Background

Signal
Dynamic fixed-size sliding time windows start from each event

Static fixed-size sliding time windows without overlapping

1st Scan
2nd Scan

Shifted same as static + second translated scan to reduce search bias
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Standard method based on Imitation Frequency

The standard method for the real-time identification of candidate SN cluster is based
on the so-called imitation frequency

Fim(m | r ,w) = Nwindows(tFAT )× Psurvival(m | rw)

= Nwindows(tFAT )×
∞∑

k=m

(rw)ke−rw

k!

and the fixed-threshold M̂ is defined such that

Fim(M̂ | r ,w) < 1

where:

w −→ time window size (e.g. 20 s)

tFAT −→ required false alert time (e.g. 1 century)

r −→ Poisson background rate

m −→ multiplicity, i.e. number of events within the analysed time window
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Standard method based on Imitation Frequency

Main Issue
Cut only on multiplicity −→ no sensitivity on the time structure of the SN burst
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The statistical basis behind the newly proposed β method

Hypothesis: stationary Poisson process with constant rate r

Psurvival(m | rw) = 1−
m−1∑
k=0

(rt)k e−rt

k!
=
∞∑

k=m

Pois (k, rt)

probability of observing at least m events in a given time interval [0, t]

Key Idea: Order Statistics
In a fixed time window W = [0,w ], the m events are uniformly distributed with

0 < t1 < t2 < · · · < tm < w

Normalising to [0,1] via
xk := tk/w

then the normalised time of the k-th event follows f (xk | m,w) = Beta(xk ; k,m + 1− k)
i.e. the k-th order statistic of uniform distribution

Transforming back in time domain

f (tk | m,w) =
1

w
× Beta

(
tk

w
; k,m + 1− k

)
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Order statistics: Theory

Definition

Let X1,X2, · · · ,XN be N random variables i.i.d with F (x) distribution, sorting in increasing order

X(1) ≤ X(2) ≤ · · · ≤ X(N)

are r.v. as well, called order statistics

Cumulative distribution

largest order statistic X(N) = max{X1,X2, · · · ,XN }

FX(N)
(x) = Pr(X(N) ≤ x) = [F (x)]n

first order statistic X(1) = min{X1,X2, · · · ,XN }

FX(1)
(x) = Pr(X(1) ≤ x) = 1− [1− F (x)]n

k-th order statistic

FX(k)
(x) = Pr( at least k of X ’s are ≤ x) =

n∑
j=k

(n
j

)
[F (x)]j [1− F (x)]n−j
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Order statistics: Theory

PDF k-th order statistic

fX(k)
(x) =

n!

(k − 1)!(n − k)!
f (x)[F (x)]k−1[1−F (x)]n−k

Heuristic Proof

Pr(X(k) ∈ [x , x + dx]) = Pr(one of the X ’s ∈ [x , x + dx] and k − 1 of the others X ’s < x)

= [ n Pr(X ∈ [x , x + dx]) ] Pr(k − 1 of other X ’s < x)

= n f (x) dx
(n − 1

k − 1

)
[Pr(X < x)]k−1 [Pr(X > x)]n−k

= n
(n − 1

k − 1

)
f (x) dx [F (x)]k−1 [1− F (x)]n−k

Recalling Gamma function definition for integers, Γ(n + 1) = n!

fX(k)
(x) =

Γ(n + 1)

Γ(n − k + 1)Γ(k)
f (x)[F (x)]k−1[1− F (x)]n−k
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Order statistics: Theory

Beta distribution

Beta(u;α, β) =
uα−1(1− u)β−1∫ 1

0 vα−1(1− v)β−1 dv
=

Γ(α+ β)

Γ(α)Γ(β)
uα−1(1− u)β−1 u ∈ [0, 1]

Order statistics of Uniform distribution on Unit interval
Let X1,X2, · · · ,XN be N random variables i.i.d with X ∼ Uniform(0, 1), the k-th order statistic

fX(k)
(u) =

n!

(k − 1)!(n − k)!
uk−1(1− u)n−k with 0 ≤ u ≤ 1

=
Γ(n + 1)

Γ(n − k + 1)Γ(k)
uk−1(1− u)n−k

= Beta(u; k, n − k + 1)

Thus
X(k) ∼ Beta(k, n − k + 1)
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Dynamic clustering

PDF: by construction t1 = 0 −→ ∆t = tm

fD(∆t | m,w) = fβ(tm | m − 1,w)

=
1

w
× Beta

(
∆t

w
;m − 1, 1

)
=

m − 1

wm−1
×∆tm−2

CDF: fixed multiplicity m

FD(∆t | m) = Prob(t ≤ ∆t | m,w)

=

∫ ∆t

0

dt fD(t|m,w)

=
1

m
Beta

(
∆t

w
;m, 1

)
=

(
∆t

w

)m−1

Numerical results + theoretical distributions
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Dynamic clustering

Discrete multiplicity density distribution −→ truncated Poisson pdf

gD(m | r ,w) =
(rw)m−1 e−rw

(m − 1)!

1

1− e−rw

=
Pois(m − 1, µ = rw)

1− e−µ

Joint probability density distribution

jD(m,∆t | r ,w) = fD(∆t | m,w)× gD(m| r ,w)

=
re−rw

1− e−rw

(r∆t)m−2

(m − 2)!

Key Idea: Decision Boundary

Build decision boundary, {∆tk} with k ≥ 2, on the m −∆t plane such that the required
false alert rate is ensured in analytical way −→ no MC-based thresholds
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Dynamic clustering: Decision Boundary Building

Constraint
∞∑
k=2

Nk × FD(∆tk | k) ≤ 1

Expected number of clusters with multiplicity k over tFAT

Nk = rtFAT × Pois (k − 1, µ = rw)

Find M̂ such that
∞∑
j=M̂

Nj < 1

e.g. the standard imitation frequency threshold

Set ∆tj = w for j ≥ M̂, the constraint can be rearranged as

M̂−1∑
k=2

Pois (k − 1, µ)×
(

∆tk
w

)k−1

≤
1−

∑∞
j=M̂ Nj

rtFAT
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Dynamic clustering: Decision Boundary Building

β discrete filter

Introducing the {βk}M̂−1
k=2 discrete filter, as follows

Pois (k − 1, µ)×
(

∆tk
w

)k−1

= βk ×
1−

∑∞
j=M̂ Nj

rtFAT

M̂−1∑
k=2

βk = 1

Such set of equations allow exploring the region m < M̂

Decision boundary : Analytical Formula
Finally we get

∆tk =


w

[
βk ·

1−
∑∞

j=M̂ Nj

Nk

]1/(k−1)

if k < M̂

w if k ≥ M̂
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Dynamic clustering: β filter application

Uniform filter βk = β∑M̂−1
k=2 β = 1 −→ β = 1

M̂−2
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Ramp filter βk = β × (k − 2)∑M̂−1
k=2 βk = 1 −→ β = 2

(M̂−2)(M̂−3)
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Example: dynamic clustering, w =20 s, tFAT = 1 day, r = 0.1 Hz, Nsimu = 104 × tFAT
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Remark on β filter method

High flexibility of β filter method −→ set additional constraints based on e.g.

penalising region where non-poissonian background occurs more frequently

discarding the multiplicities with ∆tk below the timing resolution of the detector

· · ·

General polynomial β filter

βk = β ×
∑∞

j=0 aj k
j

Reminder: β discrete filter
Dynamic clustering

Pois (k − 1, µ)×
(

∆tk

w

)k−1

= βk ×
1−

∑∞
j=M̂

Nj

rtFAT

M̂−1∑
k=2

βk = 1
Integral    9938
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Cubic Filter

a3 = 1, a2 = a1 = 0, a0 = −1
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Shifted clustering

PDF: ∆t = tm − t1 −→ sample range of order
statistics of uniform distribution

fS(∆t|m,w) =
m (m − 1)

w

(
∆t

w

)m−2(
1− ∆t

w

)
=

1

w
× Beta

(
∆t

w
;m − 1, 2

)

CDF: fixed multiplicity m

FS(∆t |m) = Prob(t ≤ ∆t|m,w)

=

∫ ∆t

0

dt fS(t|m,w)

= Beta

(
∆t

w
;m, 1

)
×[

1−
(
m − 1

m

)(
∆t

w

)]
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Shifted clustering

discrete multiplicity pdf

gS(m | r ,w) =
Pois(m, rw)

1− e−rw (1 + rw)

# clusters, multiplicity k over tFAT

Nk = NW × Pois (k, µ = rw)

where NW = (2tFAT )/w − 1

Likewise the dynamic case

Nk×FS(∆tk | k) = βk× [1−
∞∑
j=M̂

Nj ] for k < M̂

solvable for {∆tk}M̂−1
k=2 −→ root between [0,w ]

of the associated k-th degree polynomials
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Performance Enhancement Evaluation

Shifted clustering, r =0.03 Hz, w =20 s, τshort = 10 ms and τlong = 1 s
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Performance Enhancement Evaluation

Dynamic clustering, w =20 s, τshort = 10 ms and τlong = 1 s
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Summary

New β filter method
Main Result

important performance improvement (up to ∼ 80%) for real-time SN-ν monitor
with respect to standard technique

Pro’s

exploit timing information −→ bi-dimensional cut on m −∆t plane

no MC-based thresholds −→ only 1D root-finding algorithm required

flexibility in the construction of {∆tk}M̂−1
k=2 decision boundary −→ allow setting

detector-based thresholds

independent on the nature of clusters −→ applicable on wide class of real-time
discrimination processes where sliding-time windows are involved + fixed false
discovery rate is required

Con’s

careful identification of non-poissonian background component
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Backup
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[Backup] Joint PDF of two order statistics

Likewise the pdf of k-th order statistic’s case

fX(j),X(k)
(x , y)dx dy = n (n − 1) · · · f (x)f (y) dx dy where x ≤ y

fX(j),X(k)
(x , y) =

n(n − 1)(n − 2)!

(j − 1)!(k − j − 1)!(n − k)!
[F (x)]j−1[F (y)− F (x)]k−1−j [1− F (y)]n−k f (x)f (y)

fX(j),X(k)
(x , y) =

n!

(j − 1)!(k − j − 1)!(n − k)!
[F (x)]j−1[F (y)−F (x)]k−1−j [1−F (y)]n−k f (x)f (y)
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[Backup] Sample range of o.s. of uniform distribution

fX(1),X(n)
(x , y) =

n!

(n − 2)!
[F (y)− F (x)]n−2f (x)f (y)

Let X1,X2, · · · ,XN be N random variables i.i.d with X ∼ Uniform(0, 1)

fX(1),X(n)
(x , y) = n(n − 1)[y − x]n−2 where 0 ≤ x ≤ y ≤ 1

change of variable w = y − x and z = x

fX(1),X(n)
(w , z) = n(n − 1)wn−2

marginalising, y ≤ 1 −→ w + z ≤ 1

fX(1),X(n)
(w) =

∫ 1−w

0
fX(1),X(n)

(w , z)dz

= n(n − 1)wn−2(1− w)

= Beta(w ; n − 1, 2)

Thus sample range of order statistics of Uniform distribution

f1,n(w) ∼ Beta(w ; n − 1, 2)
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[Backup] Performance Enhancement Evaluation

Shifted clustering, r =0.03 Hz, w =20 s, Nsimulations = 107
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SN-like ν signal fsignal(t) = e−λlongt(1− e−λshortt) λ = 1/τ
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[Backup] Performance Enhancement Evaluation

Dynamic Uniform clustering, w =20 s, τshort = 10 ms and τlong = 1 s
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[Backup] Performance Enhancement Evaluation

Dynamic Ramp clustering, w =20 s, τshort = 10 ms and τlong = 1 s
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[Backup] Performance Enhancement Evaluation

Shifted Uniform clustering, w =20 s, τshort = 10 ms and τlong = 1 s

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Injected Signal Multiplicity

0.0121 Hz
SK-like

      0.0207 Hz
BAKSAN-like

  0.03 Hz
LVD-like

             0.05 Hz
BOREXINO-like

         0.1 Hz
HIGH RATE

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

1.5 29.8 89.9 100.0 

0.3 6.8 48.6 89.2 100.0 

0.1 2.1 20.6 63.6 90.1 100.0 

0.4 4.6 23.8 54.3 78.0 93.6 100.0 

0.4 2.7 10.4 24.3 41.1 59.1 76.8 90.7 98.0 100.0 

0.2 2.5 21.6 

0.9 6.6 34.1 

0.3 2.3 12.3 45.3 

0.4 1.9 8.1 26.6 63.4 

0.1 0.5 1.7 5.3 14.4 32.5 59.6 86.6 

ε∆STANDARD METHOD
-METHODβNEW 

[%] filterβUniform 

10
0 %

< 
0.

1 
%

 

Marco Mattiazzi (UniSi, INFN PD) Real-time detection of astrophysical ν burst December 15, 2021 7 / 8



[Backup] Performance Enhancement Evaluation

Shifted Ramp clustering, w =20 s, τshort = 10 ms and τlong = 1 s
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