Maximum-Likelihood Method for Image Reconstruction of Gamma-Ray-Detectors

Seminar of Statistical Methods

Carolin Wunderlich

December 15, 2021

= 900

Overview

Maximum-Likelihood Estimation

- Statistical estimator
 - Point estimator
 - Interval estimator
- Examples for point estimators
- Likelihood estimation
 - Likelihood function
 - Example

Image Reconstruction of Gamma-Ray Detectors

- Introduction
- Image reconstruction
 - Centroid Method
 - Statistical Method
 - Likelihood function

Image: Image:

Maximum Likelihood Estimation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ■ ■ ● ● ●

Estimator:

A function of random variables to estimate unknown parameters of a theoretical probability distribution.

Example: Arithmetic mean

$$\widehat{x} = \frac{x_1 + \dots + x_n}{n} \tag{1}$$

for $x_1 + ... + x_n$ independent, identically distributed random variables

Two types of estimators: point estimator and interval estimator

ELE SOG

A B K A B K

Point estimator:

Every sample can be assigned one value:

$$T: (X, \mathcal{A}) \to (E, \mathcal{E})$$
 (2)

with (X, \mathcal{A}) a statistic model and (E, \mathcal{E}) the measurable space. For every $e \in E$ is there an $e \in \mathcal{E}$. For all $M \in \mathcal{E}$ is $T^{-1} \in \mathcal{A}$.

 Point estimators are used to approximate values for unknown physical variables

Interval estimator:

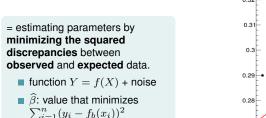
- For every $e \in E$ there is a set $\mathcal{A}(e) \{x \in X | m \in T(x)\} \in \mathcal{E}$
- statistical estimator represented by a set of points in a parameters space
- For a single parameters a to be estimated, the interval estimator gives a certain confidence interval

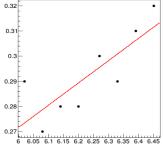
Example: Toss of coins:

53 tosses of coins with random variable $X = (X_1, ..., X_{53})$ $(X_i = 1$ if coin shows head) and $P(X_i = 1) = p$.

- from data derived value \widehat{p} is point estimator
- from data derived interval [a, b] for p is interval estimator

Method of Least Squares





= ~ ~

3 1 4 3

Method of Moments

Basic idea:

- first sample moment M₁ to the first theoretical moment E(X)
- continue to equate sample moments and theoretical moments for k = 1, 2, .. as number of parameters
- solve equations for the parameters

Definitions: Moment: $m_k := E(X^k)$

Sample moment: $M_k := 1/n \sum_{i=1}^n X_i^k$

Example:

Bernoulli random variables $X_1, X_2, ..., X_n$ with parameter μ ?

- first theoretical moment is: $E(X_i) = \mu$
- First corresponding sample moment: $E(X) = \mu = 1/n \sum_{i=1}^{n} X_i$
- Equation: $\hat{\mu} = 1/n \sum_{i=1}^{n} X_i$

Likelihood estimation:

Idea: good estimation for unknown parameter θ is the value of θ that maximizes the **likelihood** of getting the observed data.

Likelihood function:

random sample $X_1, X_2, ..., X_n$ depending one unknown parameters $\theta_1, \theta_2, ..., \theta_m$ with probability density function of each X_i is $f(x_i; \theta_1, \theta_2, ..., \theta_m)$

The joint probability density function (Likelihood function) is:

$$L(\theta_1, \theta_2, ..., \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, ..., \theta_m)$$
(3)

Maximum Likelihood estimator: $\hat{\theta}_i = u_i(X_1, X_2, ..., X_n)$

for $[u_1(x_1, x_2, ..., x_n), u_2(x_1, x_2, ..., x_n), ..., u_m(x_1, x_2, ..., x_n)]$ the m-tuple that maximizes the likelihood function.

These values $u_1, u_2, ..., u_n$ are the **maximum likelihood estimates** for θ_i for i=1,2,...,m

Time for an example ...

Example:

10 randomly selected cats from a *colonia felina* have the weights:

2.9, 3.4, 4.0, 3.7, 4.2, 2.8, 3.9, 3.8, 4.5, 3.5

What is the maximum likelihood estimator of μ ?

Probability density function of X_i is Gaussian, therefore the Likelihood function is:

$$L(\mu,\sigma) = \sigma^{-n} (2\pi)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)$$
(4)

To find the maximum, we use log of the likelihood function:

$$\log L(\mu, \sigma) = -n \log(\sigma) - \frac{n}{2} \log(2\pi) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$
(5)

The resulting estimator is:

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X} = 3.67kg \tag{6}$$

Image Reconstruction of Gamma-Ray Detectors

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●

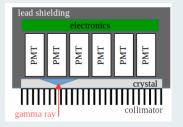
https://healthlibrary.askapollo.com/what-is-a-spect-scan-commonly-used-for/

SPECT: nuclear imaging technique used in clinical environment. Provides high efficiency in diagnosing for example Alzheimer's and Parkinson.

Setup of gamma camera

Main components:

- lead collimator
- a large scintillating crystal
- 50-100 photomultiplier tubes (PMT)
- shielding of lead around the camera



ELE NOR

< E

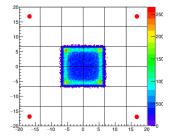
Image reconstruction

Centroid method

 Coordinates of an event *j* are reconstructed by means of the centroid of the signal q_{ij} of all *M* pixels (all *M* PMTs)

$$X_j = \frac{\sum_i^M x_i \cdot q_{ji}}{\sum_i^M q_{ji}} \qquad \qquad Y_j = \frac{\sum_i^M y_i \cdot q_{ji}}{\sum_i^M q_{ji}}$$

Simple, robust method, but not very accurate



Flood field image from simulations reconstructed with centroid

글 🕨 🖌 글

= nan

Statistical method

= find the best match between observed and expected detector signals

Advantages:

- random nature of gamma detection is taken into account
- potentially smaller distortions
- larger useful field of view
- better filtering of noise events

Challenge: Need of detailed knowledge of the average signal amplitudes as function of the event position of each pixel \rightarrow **Light Reponse Function** of each pixel (LRF)

5 1 - A C

Maximum-Likelihood Estimation

Image Reconstruction of Gamma-Ray Detectors

Light Reponse Function (LRF)

The number of photons generated in a scintillation process is Q. The probability for a *i*-th pixel to collect q_i photons is **Poisson distributed**:

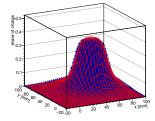
$$P_{i}(q_{i}) = \frac{\mu_{i}^{q_{i}} \exp^{-\mu_{i}}}{q_{i}!}$$
(7)

Expectation for number of photons detected by the *i*-th pixel with f_i LRF:

$$\mu_i = Q \cdot f_i(\overrightarrow{r}) \tag{8}$$

Total number of photons Q for event j for all M pixels:

$$Q_j = \sum_{i}^{M} q_{ij} \quad \rightarrow \quad f_{ij} = q_{ij}/Q_j \quad (9)$$



= find set of coordinates \widehat{X} and \widehat{Y} and energy \widehat{Q} to maximize likelihood of getting the result of the measurement.

Likelihood function

Likelihood function of Poisson distribution for *M* pixel:

$$L = \prod_{i}^{M} P(q_i|\mu_i) \tag{10}$$

Simplified as:

$$ln(L) = \sum_{i}^{M} P(q_i|\mu_i) = \sum_{i}^{M} (q_i \ln(\mu_i) - \mu_i) - \sum_{i}^{M} (q_i!)$$
(11)

For the reconstruction:

$$ln(L(\hat{r},\hat{Q})) = \sum_{i}^{M} (q_i \ln(\hat{Q}f_i(\hat{r})) - \hat{Q}f_i(\hat{r}) + const$$
(12)

 $\blacksquare \ \widehat{Q}$ can be expressed as:

$$\widehat{Q}(\overrightarrow{r}) = \frac{\sum_{i}^{M} q_{i}}{\sum_{i}^{M} f_{i}(\overrightarrow{r})}$$
(13)

$$-\ln(L(\overrightarrow{r'})) = -\sum_{i}^{N} \left(q_i \cdot \ln\left(f_i(\overrightarrow{r'}) \cdot \frac{\sum_{i}^{N} q_i}{\sum_{i}^{N} f_i(\overrightarrow{r'})} \right) - f_i(\overrightarrow{r'}) \cdot \frac{\sum_{i}^{N} q_i}{\sum_{i}^{N} f_i(\overrightarrow{r'})} \right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

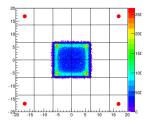
$$-\ln(L(\overrightarrow{r})) = -\sum_{i}^{N} \left(q_{i} \cdot \ln\left(f_{i}(\overrightarrow{r}) \cdot \frac{\sum_{i}^{N} q_{i}}{\sum_{i}^{N} f_{i}(\overrightarrow{r})}\right) - f_{i}(\overrightarrow{r}) \cdot \frac{\sum_{i}^{N} q_{i}}{\sum_{i}^{N} f_{i}(\overrightarrow{r})} \right) \right|$$

Implementation:

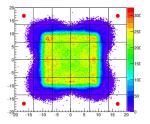
- The reconstruction was implemented in root.
- Negative Log-Likelihood function is minimized using Minuit2 Minimizer root.
- If LRFs known from calibration grid, event position can directly reconstructed
- If LRF not known, iterative technique is applied (reconstruction of flood field image + Gaussian noise after every iteration)
- Decide which shape LRF has: Gaussian or other bell-shaped function

5 1 - A C

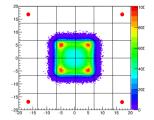
→ ∃ →



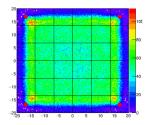
Centroid Method



with LRF after 3 iterations



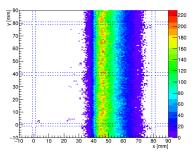
with LRF after first iteration



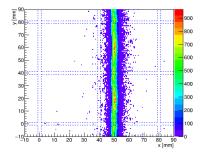
with LRF after 17 iteration

Maximum-Likelihood Method for Image Reconstruction of Gamma-Ray-Detectors

Centroid vs. Maximum Likelihood



Centroid Method after correction



Maximum Likelihood Method after correction

= 200

< E

References

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆目 のへで

Maximum Likelihood estimation

```
https://online.stat.psu.edu/stat415/lesson/1/1.2
Accessed: 2021-12-01
```


Method of Moments

https://online.stat.psu.edu/stat415/lesson/1/1.4 Accessed: 2021-12-01

Statistical estimator

https://encyclopediaofmath.org/index.php?title=Statistical_ estimator&oldid=s/s087360 Accessed: 2021-12-01

Peter Pfaffelhuber

https://www.stochastik.uni-freiburg.de/professoren/pfaffelhuber/ inhalte/stochastikIIStatistik Accessed: 2021-12-01

Least Squares Estimation

Sara A. van der Geer

Encyclopedia of Statistics in Behavioral Science 2005

5 1 - A C

- B - - B

Occhipinti, Michele

Development of a gamma-ray detection module for multimodal SPECT/MR imaging Doctoral Dissertation 2015

A Morozov and V Solovov and F Alves and V Domingos and R Martins and F Neves and V Chepel

Iterative reconstruction of detector response of an Anger gamma camera. Physics in Medicine and Biology, 2015, doi:10.1088/0031-9155/60/10/4169

A Morozov and F Alves and J Marcos and R Martins and L Pereira and V Solovov and V

Chepel

Iterative reconstruction of SiPM light response functions in a square-shaped compact gamma camera.

Physics in Medicine and Biology, 2017, doi:10.1088/1361-6560/aa6029

Baratelli, Francesco Maria

Optimization of a gamma ray detection instrument for multimodal preclinical imagion SPECT/MR

Master's Thesis 2018

Carmen Bouckaert and Stefaan Vandenberghe and Roel Van Holen

Evaluation of a compact, high-resolution SPECT detector based on digital silicon photomultipliers.

Physics in Medicine and Biology, 2014, 10.1088/0031-9155/59/23/7521

= nan

2 E

Examples for point estimators:

- Method of Least Squares
- Method of Moments
- Maximum Likelihood Estimation

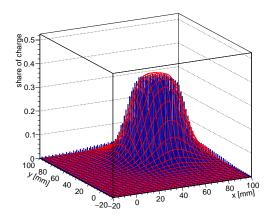
1= nac

Iterative method:

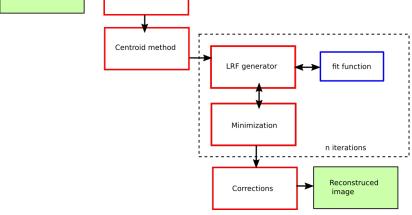
- Start value for LRF (position reconstructed with Centroid)
- Reconstruction of flood field image
- From flood field image: new LRF

Grid method:

- Calibration grid of point over field of view
- From distribution of charge over pixel for each point LRF is estimated



LRF for one pixel after interpolation



energy filter

flood field image

dataset

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●