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1 Introduction

The Artificial neural network (ANN) are a new type of algorithms that implement system that
can automatic improve and learn through the use of big data. These algorithms are inspired by the
systems of connection and neuron that characterize the animal brains. All ANN algorithms are based
on a sort of complex sets of regression functions. In order to show how the ANN work we start to
treat the Linear regression with the Ordinary Least Squares and then move the discussion to
the Gradient Descent, a technique used to find the relative minimum of a function widely used in
the ANN. In the end we show the Back Propagation (BP) a method to implement the calculation of
the minimum of the loss function with a computer algorithm using the GD/SGD.

2 Linear regression and Least Squares method

The linear regression is the set of linear estimation techniques used to express the linear relationship
between a scalar with one or more variables. In small words if one want to find a function that
approximate the trend of linear distributed data sample one can use a linear regression techniques to
do that. The Ordinary Least Squares method is a linear regression technique used to approximate
a solution of a linear distribuited data problem. Following the Figure: 1 we calculate the linear

Figure 1: A generic example of OLS where yi are the empirical data, ŷi are the estimated data di
are the distance/differences between the empirical and estimated data (ŷi − yi) the blue line is the
estimated linear fit calculated with the distances

regression for a generic linear distributed set of data. We are interested in find a linear function
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that can represent the distance d, intuitively the ”best” function should be the one that have smaller
combination of di. Mathematically, this can be achieved finding the minimum of the function of the
sum of di; the minimum can be calculated setting the first derivative equal to zero.

N∑
i=1

(di)
2 =

N∑
i=1

(ŷi − yi)2 (1)

Where we use the square d because a distance is always positive. We write ŷi in the form of a linear
function:

ŷi = axi + b (2)

This function is called linear regression function and, in this case, is represented by a straight line
with a angular coefficient and b for the intercept.

N∑
i=1

(axi + b− yi)2 = f(a, b) (3)

We want to minimize the function for the coefficient a and b. To do that we solve the linear system of
the partial first derivatives. 

∂f(a, b)

a
= 0

∂f(a, b)

b
= 0

We exchange the order of sum and derivative operator and then we calculate the first derivative{∑N
i=1 2(axi + b− yi)(xi) = 0∑N
i=1 2(axi + b− yi) = 0{

a
∑N

i=1 x
2
i + b

∑N
i=1 xi −

∑N
i=1 xiyi = 0

a
∑N

i=1 xi + bN −
∑N

i=1 yi = 0

Finally, we obtain the value for a and b that minimize the function.
a =

N
∑
xiyi −

∑
xi

∑
yi

N
∑
x2i − (

∑
xi)2

b =

∑
yi
∑
x2i −

∑
xi

∑
xiyi

N
∑
x2i − (

∑
xi)2

(4)

This method is one of the simplest method to find a linear regression function that can estimate
an independent from a dependent variable, to solve that we calculate only two parameters based on
the angular coefficient and on the intercept.
After this short demonstration it’s easy to understand that the complexity of the regression problems
raise a lot with the increment of the number of parameters. The natural extension of the linear regres-
sion is the general regression, that change the type regression function using logarithms, exponential,
parabolic (ex. ŷi(xi) = a(xi)

2 + bxi + c), cubic and many others function’s types.
In the following pages we show how this technique is the starting point for the modern ANN algo-
rithms.

3 Artificial Neural Network (ANN)

The Artificial neural network (ANN) are algorithms modelled like the animal brain, in biology and
medicine the brain can be think like a set of neurons (nodes) and synapses (connections). Each of
these objects can be mathematically represented with a function like that which can see in figure 2
and 3.

The purpose of the ANN is to solve a complex regression or classification problem, following the
fig 2 and fig 3 example we describes how a simple ANN algorithm works.
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Figure 2: example of simple neuron/node and synapses/connection.

We start from linear regression to solve a problem described by points:

xi, yi ∈ R, i = 1, ..., Ndata

where xi are the N independent input variables and yi are the N dependent output variables. We
want to find the ”best” function for estimate the yi values:

ŷi(xi) = axi + b

to do this one should use a function like that in eq: 1:

N∑
i=0

(ŷ(xi)− yi)2

these type of functions in ANN are called Loss (or Cost) function1 representing the difference
between the empirical/target output value and the estimated/calculated output value for y. The
objective is to minimize the loss function, in this way the function ŷ(xi) will be very similar to the
points yi distribution. We listed some type of loss function with theirs common use in tab: 1. These
are the same steps and consideration made in 2.
The first issue of linear regression is that it’s not enough because lack of non-linearity. Following
the fig 2 the ANN basic idea is to add a non-linearity component by inserting a function called
activation function (f in 2). These functions are a sort of switches function that turns ON or OFF
the node depending on the input. We discuss in detail these type of functions in section 4. Other
important things in the figure are: the input quantities that are called features: the characteristic
properties of the data2, the output quantities in general are called the labels, while for that regard the
regression function eq 2 the angular coefficients are in general called weights and the intercept terms
are called bias. In general the algorithm search the best set of weights that minimize the loss function

1In literature sometimes there are small difference between Loss and Cost function. In our case we use the two terms
as synonyms

2the name features derives from Machine Learning where the features are human chosen, in ANN the name remain
the same but the features are extracted by the AI network
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Figure 3: An example of NN with 2 features input layer, 2 hidden layers with 3 node and an output
layer with 3 labels

while the bias is a set of constant values that are used for increasing the network generalization.
All the previous consideration are valid in general for every node/neuron connection. The second
”improvement” respect linear regression is that the nodes can be combined in a complex Networks
and consequentially the scalar values used for the weights, biases, inputs and ouputs become vector
values. A last consideration about these systems is that the process of training is iterative, for each
iteration which is called epoch, the network weights are re-calculated randomizing the input dataset.

In figure: 3 we show how a simple network can appear. In general is very difficult to write all the
network’s equation: in our example, with 2 hidden layers and 3 nodes, we have arrived at the function
by combining 2 sum terms with 6 vectors. In a common deep learning algorithm the network can
have even 50 layers, for that reason is the ANN algorithm which generates the model. In small words
the mathematical analytical function is so complicated that cannot be calculated by a human, instead
one have a black box algorithm on which it can intervene on the inputs data and hyperparameters to
estimate the outputs.
To tune the network 3, the designer, can operates only on the input data and on the hyperparameters
of the network. The hyperparameters are all the parameters that one can use to build the network,
for example the two main ANN parameters are the number of layers and number of nodes.

3.1 LOSS function type

There are many types of loss functions, each of them is used for different kind of problem; we listed
some of the most used loss functions with theirs typical use in table: 1.

4 Activation functions

The activation functions are used to activate/deactivate the nodes and to introduce the non-
linearity. The most simplest function that one can imagine is the binary step function (fig: 4 left)
but, this function is not very useful because generates a linear response, the output is multiplied for
2 fixed values level and the derivative is 0. This function can be used in the last layer of the binary
classification network but in general the sigmoid function is preferred to this one for the same purpose.

3in ANN field, tune means: search the best value for the hyperparameters
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loss function equation typical use

Mean squared error L(yi, ŷi) =
1

N

∑N
i=0(yi − ŷi)2 Regression

Mean squared logarithmic error L(yi, ŷi) =
1

N
(log(yi + 1)− log(ŷi + 1))2 Regression

Mean absolute error L(yi, ŷi) =
1

N

∑N
i=0 |yi − ŷi| Regression

Binary cross-entropy L(yi, ŷi) = − 1

N

∑N
i=1 yi · log(ŷi) + (1− yi) · log(1− ŷi) Binary classification

Squared Hinge L(yi, ŷi) =
∑N

i=0(max(0, 1− yiŷi)2) Binary classification

MultiClass Cross Entropy L(yi, ŷi) = −
∑N

i=1 yi · log(ŷi) Multiclass classification

Table 1: Loss functions example and general uses

Figure 4: Left: Binary step function. Right: ReLU function

The most used activation function (fig: 4 right) is the rectified linear unit (ReLU), it’s easy to
see that the response is not linear because in the active part the y is proportional to the x coordinate.
The activation functions are many each one with different benefits and drawback, each is used for
different situation. Generally the function type depending on the task and on the type of network;
the used function are the same for all the nodes of the same layer, for the output layer the function
is chosen according to the type of problem (regression, binary or multiclass classification), for all the
hidden layers, it should be used the same activation function, the most used is the ReLU. Another
consideration for the activation functions is that they must be derivable at first order due to the
use of GD technique that we discuss in 5. During the application of the GD the activation function
derivative is calculated for each node (and weight) in order to update the weights; it can happen that
the chain derivative can exploding (tends to infinity) or vanishing (tends to 0), both of these cases
are problematic for the ANN model generation and there are various solution to avoid that which we
will not deal with in this text. We listed the most used activation functions and their common use
in table 2. Each of that has a common use, in theory is not forbidden use the function in different
situation.

These are only the most common activation functions, the ANN field is in constantly evolving,
moreover the mathematics formal demonstration are very complicated for the complexity of the prob-
lem and many times the functions are tested with a more experimental method. An example of a
more experimental approach can be seen in the ReLU: we say that the activation functions must be
differentiable and this implies the continuity, the ReLU is not continues in 0 but it’s the most used
function in DL. The reason is that when the algorithm calculate the ReLU in the NN systems it’s
extremely rare have a ”perfect” 0 number, most likely the value will be a very small tiny quantity close
to 0.
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Activ.function Equation Derivative Common use

Linear x 1 Regression Output

Binary step

{
0 for x < 0

1 for x ≥ 0

{
0 for x 6= 0

undef. for x = 0
Binary classification

Softmax si =
ezi∑K
l=1 e

zl
for ~z

∂zi
∂zj

=

{
1 for i = j

0 other
Multiclass classification output

Sigmoid function σ(x) =
1

1 + e−x
σ(x)(1− σ(x)) Binary/Multilabel out e RNN hidden

Hyperbolic Tangent tanh(x) 1− tanh2(x) Recurrent NN Hidden

ReLU y =

{
0 for x ≤ 0

x for x > 0


0 for x < 0

1 for x > 0

undef. for x = 0

CNN e Multilayer Perceptron Hidden

Table 2: Activation functions and theirs common use

5 Gradient Descent (GD)

The gradient descent is a techniques to calculate a local minimum (global if the function is convex)
of a differentiable function introduced by Cauchy in 1847 [1], in ANN GD is used to search a minimum
for the loss function.

Cauchy idea was to moving step-by-step through the function following the negative towards of the
gradient to reach the local minimum.

Term k+1 can be written:
xk+1 = xk − nk∇fk(xk) (5)

for ANN problem f(x) is a loss and can be written with a sum of function:

f(x) =

n∑
i=1

fi(x)

The gradient linear operator can be exchanged with sum:

xk+1 = xk − nk
n∑

i=1

∇fi(xk) (6)

where nk is called the learning rate (lr).
It can be notice that in 6.1 appear a summation operator, in ANN science the GD that use all

terms of the summation is called batch GD.
For deduce how many operations we need for upgrading one GD we can write the equation for the
update of a single parameter k (park) during the GD:

park+1 =
d

d(park)
[Loss(yk − ŷk)] (7)

For a simple approximation we replace the loss with the mean squared error function and solve the
derivative operation for a linear regression system:

park+1 =

N∑
i=1

(yi − ŷi)
dŷi
dpark

(8)

where ŷi = axi + b with a and b parameters. For parameter a:

parak+1
=

N∑
i=1

(akx+ bk − yk) ∗ (ak)
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and for b:

parbk+1
=

N∑
i=1

(akx+ bk − yk)

In this very easy example we can see that the sum is iterated on data and parameters so we have
number of operations (nop):

nop = npar ∗ ndata (9)

Looking the simple example with the linear regression function it easy conclude that for a more
complex Loss function and increasing the number of data the number of operations can easy arrive at
very large quantity for each gradient updating, this can be prohibitive for the computational power
even for the modern architecture. This kind of problems in literature are called finite sum problem.
Many solution have been proposed to reduce the computational requirement of the GD, we will exam-
ine some of that in sec: 6.

6 GD variants

Considering that the GD eq: 6.1 can be computationally expensive as the number of parameters
and data increases many solution are proposed and other are under investigation. The GD variants
are many and under study, the problem regard the compromise between the number of computation
(time) and the efficiency for the minimum estimation, in general more one wants be precise more he
approaches to the batch GD case (the case with all the summation terms). Following the overview
in article: [2] we present some gd variant used to reach a compromise between the precision and the
computation time.

6.1 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a simple technique used to simplify reduce the number of
operations in the GD, the solution consist in fix randomly (stochastic) fi to simplify the summation
in each iteration. Restarting from the GD equation 6.1:

xk+1 = xk − nk
n∑

i=1

∇fi(xk)

and using a fixed i in the sum we obtain:

i(k) ∈ 1, 2, ...n xk+1 = xk − nk∇fi(k)(xk) (10)

This simplification that counterintuitively works good, reduce the number of computation of a
factor ndata.
The differences between the GD and SGD are represented in fig: 5.

Like show in figure the SGD can be used to approximate good the minimum of the function, the
major problem is the step choice, in simple one should find a compromise about the step dimension
(learning rate(lr). There are two considerations about that: the first one is that SGD right fig: 5
is unstable, this instability depend directly on the lr dimension. More the lr is smaller more the SGD
is stable and reach better the minimum but, smaller lr means more iterations to reach the minimum
and this means more elaboration time. The second consideration is due to the fact that the GD/SGD
allow to find a global minimum for a convex function. For a not convex function the descent can
remain trapped in a local minimum point, an example is showed in fig: 6. Moreover observing the
figure it’s easy understand that if a big lr step is selected the SGD can jump out of the local minimum.
In general this technique is prefered than GD when the dataset sample is big.
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Figure 5: On left a gradient descent example on right sgd example from [3].

Figure 6: example of not convex SGD works

6.2 Mini-batch Gradient Descent

Another solution is the mini-batch Gradient Descent , that is the middle compromise between the
GD efficiency and SGD robustness. In this technique, for each epoch, a different small set (mini-batch)
of data are taken to calculate the gradient updating. An issue of this technique is that introduce
an hyperparameter for the mini-batch size that should be tuned during the network design. This
technique, actually, is the most used technique for the ANN training[2]. 4

7 Back Propagation (BP)

Back Propagation (BP) is a technique to find how the total loss propagate (back) through the neural
network in order to calculate how much is the loss in each node of the network. In that way one can
know how the weights should be updated to minimizing the loss.

Back Propagation (BP) is a diffuse and efficient algorithm used for the training and optimize the
model weights of supervised and feedforward NN. The BP using Stochastic Gradient Descent
(SGD) technique to calculates/approximate the gradient of loss function respect to weights in this
way it is possible to minimize the loss function. The algorithm can be generalized for all the not-
feedforward NN [4]. The ”back” in the name is due to the fact that calculation of the gradient takes
place backwards through the network, starting the calculation of the gradient of the last layer of
weights up to the gradient of the first layer of weights.

4the term SGD is usually used also when mini-batches are used[2]
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7.1 Example of Back Propagation (BP)

We show a simple demonstration of back propagation algorithm calculation to better understand how
it works. We use the figure 7 to extrapolate an example of back propagation algorithm.

Figure 7: ANN example used to calculate the back propagation

The objective is to find how and how much the algorithm should update the weight in each cycle:

wji ← wji + ∆wji (11)

the quantity we want to find is ∆wji where the indexes i are the input in the node and j the node
where the input arrive. The ∆wji can be written with the partial derivative of the total loss function
Ed of a training example d:

∆wji = −η ∂Ed

∂wji
(12)

Using the mean squared loss function:

Ed(~w) =
1

2

∑
k∈output

(tk − ok)2 (13)

where η is the learning rate: the value that is related to the steps of GD/SGD, tk are the
target/empirical data, ok are the estimated/output data.

For each node one can write the quantity

netj =
∑
i

wjixji + bj (14)

where wji are the weight, xji are the input i for the node j and bj are the node biases. Now using the
chain rule we can write:

∂Ed

∂wji
=

∂Ed

∂netj
∗ ∂netj
∂wji

(15)
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we solve the second term of eq:15, we can delete the sum term because the derivative for all terms
except wji is 0:

∂netj
∂wji

=
∂(
∑

i wjixji + bj)

∂wji
= xji = oi (16)

Were in the last passage we rewrite the input i for node j as the output of the i (previous) node.
For the first term of the 16 we should distinguish between two cases: first when j is an output unit

for the network and second when j is an internal unit. Starting with j as an output unit:

∂Ed

∂netj
=
∂Ed

∂oj
∗ ∂oj
∂netj

(17)

Solving the first terms of eq 17:

∂Ed

∂oj
=
∂(

1

2

∑
k(tk − ok)2)

∂oj

j=k−−−−→
j 6=k=0

−(tj − oj)

(18)

.for second term of eq 17 (
∂oj
∂netj

) we use a sigmoid activation function (σact):

oj = σact(netj) (19)

Remembering the sigmoid property:

∂σ(x)

∂x
= σ(x) ∗ (1− σ(x)) (20)

combining the second term with 20:

∂oj
∂netj

= oj ∗ (1− oj) (21)

and finally for the first case (j output unit):

∆wji = η(tj − oj)(oj(1− oj))oi (22)

For that regarding the second case (j internal node) instead we have:

∂Ed

∂netj
=

∑
k∈Down(j)

∂Ed

∂netk

∂netk
∂netj

(23)

Were we introduce new index k that represent the node of the next layer respect j and the notation
k ∈ Down(j) that is the summation of the input of the subsequent layer (backpropagation). We found
the first term before in eq: 17 with j instead k.

∂Ed

∂netk
= −(tk − ok) (24)

We solve the second part of eq 23 (
∂netk
∂netj

):

∂netk
∂netj

=
∂netk
∂oj

∂oj
∂netj

(25)

we can not consider the summation for the second part of eq 25 because does not contain k, furthermore
we can observe that we can find this before in eq 21:

∂oj
∂netj

= oj(1− oj) (26)
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and for the first part of eq 25: ∑
k∈Down

∂netk
∂oj

=
∑

k∈Down

∂(wkjxkj)

∂oj
(27)

Now it’s easy observe that xkj is oj (for example from fig:7 x64 is o4). Making the substitution:∑
k∈Down

∂(wkjxkj)

∂oj
=

∑
k∈Down

∂(wkjoj)

∂oj
=

∑
k∈Down

wkj (28)

and in the end for an hidden layer node we have:

∆wji = −η ∂Ed

netj
xji = ηoj(1− oj)

∑
k∈Down(j)

(tk − ok)wkjxji (29)

And for last we rewrite the eq 29 for an hidden layer:

∆wji = ηoj(1− oj)
∑

k∈Down(j)

(tk − ok)wkjxji (30)

and reporting the eq: 31 for the output layer to have the two equations close:

∆wji = η(tj − oj)(oj(1− oj))xji (31)

We show how basically work the back-propagation of the error in ANN. From eq: 30 it’s easy to
see the back-propagation from the output towards the input layer (k ∈ Down). We use many times
the derivative operator and in particular for the equation 7.1 one can understand the reason because
the activation function must be derivable to the first order.

8 Conclusion

Starting from a linear regression we showed some of the statistical techniques used in ANN to find
(iterate) the minimum of a loss function. These techniques are the basis of the modern ANN algorithms
which are spreading over the world in parallel with the improvement of the hardware technologies.
These algorithms are capable to deal with a big quantity of data without the human direct intervention,
for this reason the ANN are becoming very important and are studied in various research fields
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