Recent results from Water Cherenkov Arrays: HAWC and LHAASO

> *PhD Student* Stefano Menchiari

15/12/21

Outline

- ¾ Introduction: Ground based gamma-ray astronomy
	- Induced gamma-ray showers
	- Gamma vs hadronic atmospheric showers
	- Reconstruction techniques

\triangleright LHAASO and HAWC

- The HAWC observatory
- The LHAASO experiment

\triangleright Very high energy (VHE) gamma-ray astrophysics

- Science with VHE telescopes
- The candidate Pevatron MGRO J1908+06
- The first detected pulsar halo
- o Final remarks

Introduction

Gamma-rays (γ-rays): EM radiation with E>0.1 MeV tracing non-thermal processes in the universe

Gamma-rays cannot be directly detected from Earth, as they interact as soon as they hit the atmosphere.

Depending on the energy, γ -rays can be detected **directly** or **indirectly**:

- Low energy (<GeV) and high energy (HE) γ -rays $(GeV - 100 GeV)$ are detected directly from space.
- \triangleright At Very high-energy (VHE) (>100 GeV), \triangleright rays are detected indirectly from ground: fluxes too low!

Example: $\Phi_{\rm Crab}$ (1 TeV)≈3x10⁻¹¹ TeV⁻¹ s⁻¹ cm⁻² 10 photons per yr at 1 TeV, for 1 m^2 detector

When a γ -rays (primary γ -ray) enters the atmosphere, it interacts creating a cascade of particles (**extensive air shower, EAS**). Ground based γ -ray astronomy consists in reconstructing the primary γ -ray properties (direction and energy) by studying the generated air shower

Example: Fermi-LAT space telescope detects directly γ -rays from ≈ 1 MeV to \approx 100 GeV

Cherenkov light Primary Air shower **Example**: MAGIC Shower particles and HAWC telescopes. Both telescopes detect γrays by studying air showers using two different techniques

Induced γ-ray showers A simple approach to describe the shower development is the Heitler model (Heitler, 1954) is the **Heitler model** (Heitler, 1954)

> The primary γ -ray (energy E_0) after an interaction length **R** [g cm⁻²] creates a pair of particles (E≈*E0*/2). Each of those new particles will, in turn, create new pairs once traveling a "distance" equal to R. After *k* interactions (k=X/R) we have 2^k particles, each with an energy of $E_o/2^k$. The process continues until the created particles have energy less than a critical value *E_c* for which the creation of new pairs is suppressed.

$$
X_{max} = R \cdot log_2 \left(\frac{E_0}{E_c}\right) \; ; \; N_{max} = 2^{k_{max}} = \frac{E_0}{E_c}
$$

Primary γ·ray energy (*E₀***) Primary γ·ray direction**

In general, the shower development is more complicated. A good modeling is achieved using monte carlo simulations (i.e.: CORSIKA software)

$$
N(X) = N(X_{\max}) \left(\frac{X - X_0}{X_{\max} - X_0} \right)^{\frac{X_{\max} - X_0}{\lambda}} \cdot e^{\frac{X_{\max} - X}{\lambda}}
$$

; $r_m \approx 100m$

Longitudinal profile

Radial profile (Nishimura Kamata Greisen, NKG)

Reconstruction examples in backup slides

r [m]

(Bauleo et al, 2009)

 $\int_{\mathcal{B}} c m^2 \vec{q}$

Hadronic vs y-ray showers

Particle showers are also created by the hadronic component of **Cosmic Rays** (CRs). Hadronic showers represents a nonnegligible background component in gamma astronomy.

> **Example**: $\Phi_{\,\rm CRS} (1~\rm TeV)$ \approx 1×10^{-4} GeV⁻¹ sr $^{-1}$ s $^{-1}$ cm $^{-2}$ $\Phi_{\text{CRs}}(1 \text{ TeV}, 0.5^{\circ 2}) \approx 20 \text{X} \Phi_{\text{Crab}}(1 \text{ TeV})$

Differences with electromagnetic (EM) showers:

- Large transverse momentum transfer causes bigger fluctuations
- Irregular shower structure
- Hadronic showers have a higher number of muons respect to EM showers

High Altitute Water Cherenkov (HAWC)

The HAWC γ-ray observatory (Abeysekara et al. 2013) is a second-generation ground-based Water Cherenkov Detector array. It is located at Sierra Negra central Mexico at 4100 m above sea level

General properties:

- Area of 22000m2
- Field of view of ≈2sr
- 95% duty cycle
- \Box 300 water Cherenkov detectors
	- Diameter 7.3 m, height 5 m, 2x10⁵ liters
	- On the bottom: 4 PMT (spaced 1.8 m, 120°)
- Data Acquisition System (DAQ). Two DAQ: *main* and *scaler*. The first is used to reconstruct individual air shower events, the latter is used for transient studies
	- Trigger: 28 PMTs on for Δt=150ns
	- Once triggered, read PMT each $2\mu s$ (10ms for scaler)

Large High Altitude Air Shower Observatory (LHAASO)

The LHAASO telescope is a complex of EAS detector arrays located on Mountain Haizi at 4,410 m above sea level, in Sichuan, China. It consists of three interconnected detector arrays, kilometer square array (**KM2A**), Water Cherenkov Detector Array (**WCDA**) and Wide FoV Cherenkov Telescope Array (**WFCTA**)

WCDA:

- Mainly used for transient studies
- Three water ponds with A=78,000 m², filled to a depth of 4.5 m.
- PSF≈0.2* for E>1TeV
- FoV≈1/6 sky

Q WFCTA:

- 18 telescopes designed for detection of atmospheric Cherenkov light produced by secondary particles
- Used to study CRs showers for $E_{\text{primary}} = 50 100 \text{ PeV}$
- **KM2A**:
	- 5,195 scintillation counters (EDs) (1 $m²$ each, 15 m grid)
	- 1,188 undersurface muon detectors (MDs) consisting of buried WCDs (18 m2 each, 30 m grid)
	- Total area ≈ 1.3 km²
	- Field of view of ≈2sr (60% sky coverage)

Thanks to the KM2A detector, LHAASO is capable to probe with high accuracy the energies above 100 TeV. **This is the first telescope to accomplish such result.**

LHAASO spectral sensitivity (Bai et al, 2019)

γ-rays are strictly related to the physics of CRs and are used to probe the properties of high-energy astrophysical sources: *What type of science can we investigate using EAS telescopes?*
 v-rays are strictly related to the physics of CRs and are used to probability of CRS and are used to probability

The search for Pevatrons

The origin of CRs below $\approx 10^{18}$ eV is considered to be galactic. The cause of the knee feature at PeV is still under debate. **Knee could be related to the maximum achievable energy from galactic accelerators**. **An object accelerating particles at PeV is called Pevatron**. Studying the γ em ission at VHE is a critical ingredient to understanding who is producing CRs

High energy astrophysical sources

Detecting a source in the VHE domain doesn't mean it's a Pevatron. Careful modeling is needed to understand if the source can accelerate CRs at PeV energies. Analyzing the γ -ray morphology and spectrum of a source can lead to important information on the physics of the source itself

Two main processes can generate γ-rays:

- Hadrons interactions with the interstellar matter generate $\pi^0 \rightarrow 2\gamma$
	- \triangleright Inverse Compton process of high energy leptons

Tycho supernova remnant (SNR) Crab nebula (Pulsar Wind Nebula, PWN) 30 Doradus massive star cluster (MSC)

UHE photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources (Cao et al, 2021)

First published LHAASO sky survey:

- \triangleright Start of the operation in 27/12/2019 for a total of 308 live-time days
- \triangleright Data taken using only a part of KM2A (not finished yet)
- \triangleright Detection of 12 sources (Crab included) along the galactic plane
- \triangleright Crab nebula is the only one firm association with known source
- \triangleright Most of the detected sources are found in coincidence with pulsars. Only in one case the PSR can't explain the maximum energy observed
- ¾ Highest energetic gamma detected has E=1.4 PeV, in the direction of the Cygnus region
- \triangleright In the paper, a preliminary spectral analysis is performed for the three most luminous

Sources detected

Sources detected

HAWC Study of the UHE Spectrum of MGRO J1908+06 (HAWC collab, 2021)

MGRO J1908+06 (or 3HWC 1908+063 or LHAASO J1908+0621) is a promising pevatron candidate, showing hard spectrum beyond 100TeV.

Declination (°)

285

286

In the paper, four different models are considered to fit HAWC data:

Single hadronic population:

• Disfavored but not ruled out, require too much energy

Single leptonic population:

- ExpCutOffPwl population fitted
- α =2.68±0.04, E_{max} >610TeV (10PeV used)

Two population leptonic:

- BrokenPwl (LE) + ExpCutOffPwl (HE)
- Overshoot X-rays upper limits

Two population leptonic-hadronic:

- BrokenPwl (leptons) + ExpCutOffPwl (hadrons)
- E_{max} = 9 PeV for hadrons
- Overshoot X-rays upper limits

First detection of pulsar halos: The case of Geminga

Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth (Abeysekara et al, 2017)

First detection of a "Pulsar Halo": Extended gamma emission from diffusing VHE electron/positron (100 TeV) expected around middle-aged (100-400 kyr) pulsars.

> The size of gamma emission can be used to constrain the diffusion coefficient, leading to an estimation of the positron flux at Earth:

$$
\frac{d^2N}{dEd\Omega} = N_0 \left(\frac{E}{20\text{TeV}}\right)^{-\alpha} \frac{1.22}{\pi^{3/2}\theta_d(E)[\theta + 0.06\theta_d(E)]} e^{[-\theta^2/\theta_d(E)^2]}
$$
\n
$$
\theta_d = \frac{180\sqrt{4D(E)t_E}}{\pi} \xrightarrow{\text{(Best fit)}} D(E = 100TeV) \approx 4 \cdot 10^{27} \left[\frac{cm^2}{s}\right]
$$

To explain the size of the halo, a D(E) suppressed by a factor of 100 is necessary

 -50

offset [pc]

 $\succ -100$

 -150

 -300

Final Remarks

\Box Water Cherenkov telescopes:

¾ Pros:

- Large FOV permits investigation of extended sources
- Optimal tools for surveys
- Large duty cycle

¾ Cons:

- Low angular resolution
- \Box Super interesting recent results from HAWC and (specially) LHAASO
- \Box WCD (but in general EAS detector) are crucial to understand the origin of CRs
	- **Source observations**
	- Diffuse gamma study
	- \blacksquare Transient studies
- \Box At present, no such detectors are present in the southern hemisphere: the developing of WCD telescope is undergoing (Southern Wide-field Gamma-ray Observatory, SWGO)

Backup Slides

HAWC event reconstruction

Core reconstruction:

- 1. Center of mass fit
- 2. Super fast core fit (SFCF) $(\sigma=10, N=5x10^{-5})$:

$$
Q_i = A \left(\frac{1}{2\pi\sigma^2} \exp\left(\frac{-\mid \mathbf{x} - \mathbf{x_i} \mid^2}{2\sigma^2} \right) + \frac{N}{\left(0.5 + \frac{\mid \mathbf{x} - \mathbf{x_i} \mid}{R_{\text{Mol}}^2} \right)^3} \right) \qquad R_{\text{Mol}} = r_m \approx 120 \text{m}
$$

3. Freeze core position and fit NKG profile

Energy reconstruction:

- 1. Events divided in 9 bin depending on f_{hit}
- 2. Primary γ -ray energy estimated using ML technique depending on the bin

Direction reconstruction:

- 1. Timing information is corrected (sampling and curvature)
- 2. Direction estimated using planar fit

γ-hadron separation:

- Separation using to parameters
- Compactness (smaller for hadronic shower), charge deposited outside a ring of 40m.
- Parameter for Identifying Nuclear Cosmic-rays (PINC), smoothness of the lateral profile

$$
\mathcal{P} = \frac{1}{N} \sum_{i=0}^{N} \frac{(\log_{10} q_i - \langle \log_{10} q_i \rangle)^2}{\sigma_{\log_{10} q_i}^2}, \quad \mathcal{C} = \frac{N_{\text{hit}}}{\text{CxPE}_{40}},
$$

Standard cuts for Crab nebula observations (Abeysekara et al. 2013)

KM2A events reconstruction

Event reconstruction with the KM2A detector. Performance studies performed using Crab Nebula data (Aharonian et al, 2020)

Core reconstruction:

- 1. Centroid fit to obtain initial guess on core position
- 2. Filter noise events
- 3. Fit NKG profile

Energy reconstruction:

1. Use the particle density at r=50m (ρ_{50})

 $log(E_{\text{rec}}/TeV) = a(\theta) \cdot (log(\rho_{50}))^2 + b(\theta) \cdot log(\rho_{50}) + c(\theta)$

2. Energy resolution depends on the zenith angle

Direction reconstruction:

1. Fit shower plane

$$
\chi^{2} = \frac{1}{N_{hit}} \sum_{i=1}^{i=N_{hit}} w_{i} (t_{i} - l\frac{x_{i}}{c} - m\frac{y_{i}}{c} - n\frac{z_{i}}{c} - \alpha\frac{r_{i}}{c} - t_{0})
$$

with l=sin⊖cos⊕ m=sin⊖in⊕ n=cos⊖

2. Use weight to correct for asymmetry in arrival time for distant particles

γ-hadron separation:

Separation using the ratio R between N_u and N_e

$$
R = \log(\frac{N_{\mu} + 0.0001}{N_{\rm e}})
$$

- Cuts on R depends on the energy
- Low CR survival fraction (10-2 at TeV, 10-4 at PeV)

 $0.4\Box$

 0.3

 0.2

 $log(E_{\text{max}}/TeV)$

WCDA event reconstruction

Performance of LHAASO -WCDA and Observation of Crab Nebula as a Standard Candle (Aharonian et al, 2021)

The WCDA detector is still under construction. As far, only calibration for WCDA1 has been published

1. Direction reconstruction :

- Find the arrival direction by assuming a planar shower
- Events arrived too late (>100ns) are filtered

2. Core reconstruction :

- Core location found using charge weighted averages (center of mass)
- Use only filtered events
- Additionally filter all PMT hit that are further away than 30ns from the shower core

3. Energy reconstruction :

- Strategy similar to HAWC
- **•** Energy of the primary depends on the number of triggered PMT (N_{hit})
- N_{hit} divided in 6 bin, each bin is proportional to the primary gamma-ray energy

\Box **γ-hadron separation** :

Similar to HAWC, uses the compactness parameter: $C = N_{hit}/\text{Max}(Q_i; r > R_c)$

 (a) (b)

 (c) (d)

(e)

 (f)

Results per each bin for the Crab nebula observation

HAWC - LHAASO Survival fraction plots

The case of Cygnus Cocoon: MSC as possible Pevatrons

Cygnus region is a complex area with multiple HE sources. Cygnus Cocoon extended emission possible associated to CRs accelerated by the MSC OB2

HAWC observations of the acceleration of veryhigh-energy cosmic rays in the Cygnus Cocoon (Abeysekara et al, 2021) **Detection of emission from Cygnus Cocoon above 100TeV with LHAASO** (Li et al, 2021)

In HAWC paper, three different physical models are considered to reproduce the Cocoon SED:

Hadronic with burst injection:

- CRs accelerated due to starburst activity
- Flat radial profile is expected
- $E_{\rm max}$ >1 PeV

Hadronic with continuous injection:

- CRs are continuously accelerated by OB2
- For pure diffusion, 1/r profile is expected
- E_{max} =300 TeV

Leptonic model

- Single leptonic population
- IC on Stellar light + IR field from dust clouds
- Overshoot X-ray limits

 \sim

 $\overline{10}$

 ∞

9

4

 \sim

 \circ

 \mathbf{C}

 10^{15}

Significance (o)

Cygnus-X region

Herschel Spire 500 μ m + MSX-A (8 μ m) + WMAP (40 GHz)

CR accelerated by MSC

Model developed by Morlino et al. (submitted) of CR accelerated at the winds' termination shock from MSC

Outside the bubble:

$$
f(r > R_b; E) = f(R_b; E)\frac{R_b}{r} + f_{gal}(E)\left(1 - \frac{R_b}{r}\right)
$$

Inside the bubble:

$$
f(R_{TS} < r < R_b; E) = f_{TS}(E)\Gamma_1 + f_{gal}(E)\Gamma_2
$$

Where Γ_1 and Γ_2 are function depending on D_2 , D_{ism} , U_2 , R_{TS} and R_{b} (see backup slides for more details). The sample of the state of t

In the cold wind region:

$$
f(r < R_{TS}; E) = f_{TS}(E) \cdot exp\left[-\frac{u_1(R_{TS} - r)}{D_1}\right]
$$

The distribution function at the termination shock is modeled as:

$$
f_{TS}(E) = k \left(\frac{E}{E_0}\right)^{-\alpha} exp \bigg[- \left(\frac{E}{E_{coff}}\right)^{\beta} \bigg]
$$

In the full solution, β is connected to the diffusion coefficient

L_w=2x10³⁸ erg/s; dM/dt=10⁻⁴M_{sun}/yr; d_{OB2}=1400pc $u_1 = 2500$ km/s; $u_2 = u_1/4$; $\rho_H = 10/cm^3$; $t_{\text{age}} = 3$ Myr; $\varepsilon_{CR} = 0.03$ $R_{TS} = 0.7 \cdot L_w^{-1/5} \dot{M}^{1/2} u_1^{1/2} \rho_H^{-3/10} t_{age}^{2/5} \simeq 16 pc$ $R_b = 0.76 \cdot \left(\frac{L_w}{\rho_H}\right)^{1/5} t_{age}^{3/5} \simeq 98 pc$ $k = \frac{\epsilon_{CR}L_w}{\pi R_{TS}^2 u_2} \bigg/ \int E \bigg(\frac{E}{E_0}\bigg)^{-\alpha} exp \bigg[- \bigg(\frac{E}{E_{coff}}\bigg)^{\beta} \bigg] \simeq 1.5 \ cm^{-3} GeV^{-1}$

Radiative processes

Example: hadronic and inverse Compton (IC) emission from a cut-off power-law particle distribution function.

$$
\frac{dN}{dE} = N_0 \left(\frac{E}{E_{ref}}\right)^{\alpha} \exp\left[-\frac{E}{E_{coff}}\right] \qquad p+p \to p+p+\pi^0
$$

$$
p+p \to p+n+\pi^+.
$$

$$
p+p \to p+p+\pi^++\pi^-
$$

Hadronic gamma flux from pi0 decay:

$$
\phi_{\pi_0}(E_\gamma) = \frac{c}{4\pi D^2} \int n_{ism} \frac{dN}{dE_p} \frac{d\sigma(E_p, E_\gamma)}{dE_p} dE_p
$$

Gamma flux from IC scattering:

$$
\phi_{IC}(E_\gamma) \propto E^{-\frac{\alpha+1}{2}}
$$

SED computation using the computation using the Naima python package ackage $\overline{\mathbf{Q}}$ python Naima SED

import numpy as np import naima import astropy.units as u # Define energy axis for the gamma emission spectrum energy = np.logspace(-3, 7, 1000) * u.GeV # Define particle distribution -9 ECPL = naima.models.ExponentialCutoffPowerLaw(10 1e36 * u.Unit("1/eV"), 1 * u.TeV, 2.1, 1000 * u.TeV 11 12 13 # Calculate the gamma spectrum for IC and Pi0 decay 14 15 IC CMB = naima.models.InverseCompton(ECPL, seed photon fields=["CMB"], Eemax=1000*u.PeV' IC_FIR = naima.models.InverseCompton(ECPL, seed_photon_fields=["FIR"], Eemax=1000*u.PeV) 16 17 IC_NIR = naima.models.InverseCompton(ECPL, seed_photon_fields=["NIR"], Eemax=1000*u.PeV Pi0 = naima.models.PionDecay(ECPL, 500*u.cm**-3, Epmax=1000*u.PeV, hiEmodel='QGSJET') 18 19 20 # Calculate the SED sed_IC_CMB = IC_CMB.sed(spectrum_energy, distance=1.5 * u.kpc) sed_IC_FIR = IC_FIR.sed(spectrum_energy, distance=1.5 * u.kpc) $22 -$ 23 sed_IC_NIR = IC_NIR.sed(spectrum_energy, distance=1.5 * u.kpc) sed_Pi0 = Pi0.sed(spectrum_energy, distance=1.5 * u.kpc) 10^{-1} Total IC IC on NIR --- IC on CMB π_0 decay $---$ IC on FIR 10^{-8} Ξ S $E^2\phi(E)$ [erg cm⁻² 10^{-10} 10^{-12} 10^{-1} 10^{-2} $10⁰$ $10²$ $10⁴$ $10⁶$

E [GeV]

Diffusive shock acceleration (DSA)

Each time you cross a shock twice you gain energy: $\frac{\Delta E}{E} = \frac{E_2 - E_1}{E_1} = \gamma^2 \left[\beta^2 (1 - \mu \mu') - \beta (\mu - \mu') \right]$

Average energy gained:

$$
\left\langle \frac{\Delta E}{E} \right\rangle = \int_{-1}^{1} d\mu P(\mu) \int_{-1}^{1} d\mu' P(\mu') \frac{\Delta E}{E}(\mu, \mu')
$$

$$
\left\langle \frac{\Delta E}{E} \right\rangle = 4 \left(\frac{\beta}{3} + \frac{13}{9} \beta^2 \right)
$$

If you cross k times:

$$
E_{k+1} = (1+\xi)E_k; \ \xi = \frac{4}{3}\frac{U_1 - U_2}{c}
$$

Expected spectrum of particle is a power-law:

$$
E_k = (1 + \xi)^k E_0
$$

$$
N_k = P_{ret}^k N_0
$$

$$
N_k = N_0 \left(\frac{E_k}{E_0}\right)^{-\gamma_1} \quad \gamma_1 = -\frac{\ln P_{ret}}{\ln(1+\xi)}
$$

UPSTREAM DOWNSTREAM

