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Charged particles tracking

e The measurement of trajectories of charged particles is ubiquitous in physics areas and applications:
o  Nuclear and particle physics.
o  Cosmic rays detection.
O  Mass spectrometers.
o  Medical treatment with charged particles.

® Many physics experiments use silicon detectors in their tracking sub-detectors.
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Silicon detectors

e Silicon detectors can respond to many needs of high energy physic experiments:

o  High spatial granularity: O(10 pum).

o  Large areas coverage: O(100 m?).

o  Very high data tacking rates: O(10 MHz).

o High radiation tolerance: O(10%° N cm?) withn @ 1 MeV.

e Silicon detectors can measure the arrival time of a particle with a resolution > 200 ps.
o Atthe speed of light, flight path uncertainty greater than 6 cm.

e New types of silicon detectors promise to reach a time resolution of 10 ps.

® |t can be interesting for a time-of-flight detector.
It is a crucial capability for tracking in experiments at high-luminosity colliders.




Pileup at collider experiments

® At each bunch crossing multiple collisions may happen (events).

e A primary vertex is associated to each event.
https://cds.cern.ch/record/2241144

CMS Experiment at the LHC, CERN
Data recorded: 2016-Aug-27 23:44:01.739584 GMT
Run / Event/ LS: 279685 / 178456860 / 95

Event at CMS with 30 reconstructed vertices.


https://cds.cern.ch/record/2241144?ln=it

Pileup at collider experiments

® At each bunch crossing multiple collisions may happen (events).

e A primary vertex is associated to each event.

CMS Experiment at the LHC, CERN
' 4| Data recorded: 2016-Sep-08 08:30:28.497920 GMT

https://cds.cern.ch/record/2241144

Ya= | Run/Event/LS: 280327 /55711771 /67

Event at CMS with 86 reconstructed vertices.


https://cds.cern.ch/record/2241144?ln=it

Pileup at collider experiments

Increasing the luminosity also the number of events increases.
At HL-LHC will be 150-200 events per bunch crossing.

The spatial density is so high that the vertices will overlap. Event at CMS with ~50 vertices

e This overlap causes:
o degradation in the reconstruction precision.
o Loss of events.

Events do not happen at the same time:
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Pileup mitigation with time layer

The events timing distribution has a RMS of ~150 ps.

Assigning a time with a resolution of ~30 ps to each
track is possible to divide a bunch crossing in 5
groups, each with fewer events.

A single detection layer with timing capabilities is
sufficient.
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Pileup mitigation with time layer

e The events timing distribution has a RMS of ~150 ps.
CMS Simulation: HL-LHC beamspot - <NPU> =140
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Fully 4D Tracking

® Increasing the luminosity also the number of tracks increases.
o  Computational power for track reconstruction explode exponentially.

e Atracker composed by all layer with timing capabilities associates a time to each hit.
o  Drawback in terms of power and cooling requirements, readout circuits, and costs.

e Considering only time compatible hits during track reconstruction reduces the possible hits combinations.

Without timing information it is necessary to search ~ With timing information is possible to group time

aligned hits trying all the reasonable combination compatible hits (same color) 10




Silicon detectors

p doped silicon with n** and p*™ electrodes.
® n-pjunction inversely polarized.
e Incident charged particles create electron-hole pairs along their paths.

Electron (holes) drift to the n™* (p™*) electrode, creating an induced current.

11




Readout

Iin \D ——] Cd V >
= Vin @omparator

‘Sensor | |Pre-amplifier ‘ |Time measuring circuit |

® Sensors is equivalent to a capacitor and a current source in parallel.
e A pre-amplifier shapes the signal (often integrating the current).

® The time measuring circuit compares the signal to a threshold and digitizes the instant t; when the signal
exceeds it.

e Current reaches its maximum right after the passage of the particle: typical I = 1.5 pA.
It ends when the last carrier reaches its electrode: 3(5) ns for electron (hole) (300 um thick sensor @ 600 V). 12




Time measurement

Iin \D — Cd V >
= Vin @omparator

‘Sensor | |Pre-amplifier ‘ |Time measuring circuit |

® To produce accurate measurements of t, the signal (S) must be large and with a short rise time (tr).

e Therise time depends on the drift time of the carrier, a thinner sensor will have better performances:
©  Thin sensor — shortt — low O,

e \Very thin sensors (< 50 um) have large capacitance:
o Very thin sensor — high C, — small S — higher 0,

13




Time measurement
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‘Sensor | |Pre-amplifier ‘ |Time measuring circuit |

® To produce accurate measurements of t, the signal (S) must be large and with a short rise time (tr).
e The amplitude of the signal depends from the current | .

e We can increase increase it:
o Amplifying the current inside the detector.
o  Decorrelating the number of carrier from the distance between electrodes.

14




Low-gain avalanche detectors

® Devices as SiPM and APD have a high gain to amplify the signal produced by few photons.
o  They have big pixel pitch, and high noise and power consumption when damaged by radiation.

Charged particles produce a higher number of carrier and the gain can be low.
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e InLGADs a p* layer is added close to n-p junction.
e The electric field results ennanched near the junction.

Electrons drifting toward the n** electrode are multiplied by avalanche effect (gain ~20). 15




Gain

First thin (50 um) LGAD production was presented in 2016.

Low-gain avalanche detectors

First measurements of LGAD sensors were publicated in 2014.

Produce LGAD sensors is challenging, since the gain depends strongly on the doping concentration of the gain

layer — it is crucial to control this concentration at per cent level.
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Hartmut F-W Sadrozinski et al 2018 Rep. Prog. Phys.
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https://iopscience.iop.org/article/10.1088/1361-6633/aa94d3/pdf
https://iopscience.iop.org/article/10.1088/1361-6633/aa94d3/pdf

LGAD - time resolution

® Beam tests performed on LGAD show a time resolution ~30 ps (suitable for experiments at HL-LHC).

e Combining the measurements of N devices the resolution scale as o(N) = 0(1)/\/N
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non-uniform charge deposition
Hartmut F.-W. Sadrozinski, "Time Resolution of LGAD", Trento 2017 17



https://indico.cern.ch/event/587631/contributions/2471694/attachments/1415772/2167581/Trento.pptx
https://doi.org/10.1016/j.nima.2017.01.021
https://doi.org/10.1016/j.nima.2017.01.021
https://doi.org/10.1016/j.nima.2017.01.021

LGAD - radiation hardness

e Studies pointed out that LGAD gain is compromised when the sensor is irradiated.

Neutron irradiation lowers the doping in the gain layer through acceptor removal.

After 6 10 Neq cm the gain of a sensor is equivalent to the pre-radiated gain of a sensor with a 30% lower
doping (expected fluence at HL-LHC is 10® N, cm2yl).

Several studies are exploring how to improve the LGAD radiation hardness.

e Carbon in the gain layer reduces the acceptor removal mechanism.

Acceptor removal
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https://doi.org/10.1016/j.nima.2020.164383
https://doi.org/10.1016/j.nima.2020.164383

Time measurement

Iin \D — Cd V >
= Vin @omparator

‘Sensor | |Pre-amplifier ‘ |Time measuring circuit |

® To produce accurate measurements of t, the signal (S) must be large and with a short rise time (tr).
e The amplitude of the signal depends from the current | .

e We can increase increase it:
o Amplifying the current inside the detector.
—Pp 0 Decorrelating the number of carrier from the distance between electrodes.
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Current in a silicon detector

According to Ramo—Shockley’s theorem, the current induced by a charge carrier is:

i(t) = —qv Ey,

Where:

° E} : drift velocity, constant if the electric field is high enough everywhere.
e F,, : weighting field, represents the coupling of a charge to the read-out electrode.

It must be multiplied by the number of carrier.
e The number of carriers is proportional to sensor thickness (d).

® The weighting field is inversely proportional to the distance of the electrodes
(also d).

The current in a silicon detector should not depend on sensor thickness.

20




3D silicon detectors

e In 1997 a new architecture was proposed: a 3D array of electrodes that penetrate into the detector bulk.
0  2011: study about timing performance.

o  2017: first studies for the realization of a real sensor optimized for timing measurements.
e Sensor thickness (D) and electrodes distance (d) are now uncorrelated.

e The current is enhanced respect to a plain sensor because is now proportional to D/d.
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3D silicon detectors - geometry

® The columnar geometry do not produce uniform electric field and it drop to zero between border electrodes
— not uniform drift velocity, impact on weighting field — worst time resolution.

Studies explored different geometries choosing a square pixel with parallel trench configuration
(geometry as close as possible to a parallel plate capacitor).

Abs(ElectricField-V) (V*ecmA?-1)
1.200e+05

1.000e+05

A. Loi, Design of 3D silicon sensors for high resolution time measurements, 13th “Trento” Workshop on Advance Silicon Radiation Detectors, Munich, 19-21 February 2018



https://pandora.infn.it/public/b088ab

3D silicon detectors - geometry

3D model
e A 3D geometry is not trivial and needs to be studied in the

entire volume.

e Also the production of the sensor is challenging.

Area between two n** electrodes

Area below n** electrode

Abs(ElectricField-V) (V'cm?-1)

1.200e+05
!lm'OOS
8.000e+04
Cut over XY I‘“‘m"‘" A. Loi. Design of 3D silicon sensors for high resolution time measurements.,
i coescs 13th “Trento” Workshop on Advance Silicon Radiation Detectors, Munich,

19-21 February 2018
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https://pandora.infn.it/public/b088ab
https://pandora.infn.it/public/b088ab
https://pandora.infn.it/public/b088ab

3D silicon detectors - time resolution

® Beam tests show a time resolution between 20 and 35 ps depending on how the time of arrival are computed

(suitable for experiments at HL-LHC).
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https://iopscience.iop.org/article/10.1088/1748-0221/15/09/P09029
https://iopscience.iop.org/article/10.1088/1748-0221/15/09/P09029

Summary

e At high-luminosity collider, the spatial density of collision will not permit to separate the vertices.

e Event reconstruction will require a huge computation power due to the high-number of possible hits
combinations.

e Add time information to hits is a possible solution to these challenges.
e Silicon detectors of new generation can measure the time of arrival of a particle with resolution suitable for
experiments at HL-LHC (~30 ps):

how to improve their radiation hardness.

and time resolution are promising.

® Low-gain avalanche detectors are already produced by sensors manufacturer, and several studies are exploring

® The application of 3D silicon detectors for timing measurements is relatively new, however radiation hardness

25
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https://doi.org/10.1016/j.nima.2020.164383
https://doi.org/10.1016/j.nima.2020.164383
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electric field E for different temperatures.
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3D-trench silicon sensor sizes
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https://indico.cern.ch/event/929320/
https://indico.cern.ch/event/929320/
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