ntroduction to interferometry	Radio interferometry	Optical/IR interferometry	Intensity interferometry	References

Interferometry at different wavelengths: from radio to Cherenkov telescopes Seminar of Experimental Techniques

Carolin Wunderlich

December 14, 2021

Introduction to interferometry	Radio interferometry	Optical/IR interferometry	Intensity interferometry	References
Overview				

Introduction to interferometry

- Basics
- Working principle of interferometers

2 Radio interferometry

- Brief history
- Example: ALMA

Optical/IR interferometry

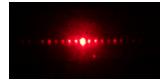
- Design of optical interferometers
- Example: VLTI

Intensity interferometry

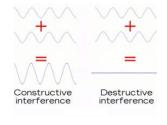
- Principle of Intensity interferometry
- Cherenkov telescope arrays as intensity interferometers
- Example: MAGIC

Introduction to interferometry ●○○○○○○	Radio interferometry	Optical/IR interferometry	Intensity interferometry	References

Introduction to interferometry


(日)

= 2000


Introduction to interferometry	Radio interferometry	Optical/IR interferometry	Intensity interferometry	References
000000	0000000	0000	000000	

Principle of classical interference

A light beam is split into two or more beams, which take different paths and are then reunited and form a interference pattern.

https://www.researchgate.net/figure/Interference-patternproduced-by-a-red-laser-light-traveling-through-a-Moiregrating_fig4_261382522

https://www.researchgate.net/figure/Constructive-and-Destructive-Interference-in-Wave-Patterns-Schematic-Woodford-C_fig76_343391907

H N

Introduction to interferometry	Radio interferometry	Optical/IR interferometry	Intensity interferometry	References
000000				

Normalized first-order correlation function

Correlation between electromagnetic fields at two different locations $\vec{r_1}, \vec{r_1}$ and two different times t_1, t_2 :

$$g^{(1)}(\vec{r_1}, t_1, \vec{r_2}, t_2) = \frac{\langle E^*(\vec{r_1}, t_1) E(\vec{r_2}, t_2) \rangle}{\left[\langle |E(\vec{r_1}, t_1)|^2 \rangle \langle |E(\vec{r_2}, t_2)|^2 \rangle \right]^{1/2}}$$
(1)

- Typical interferometers explore the first order correlation function $g^{(1)}$
- Coherent light: $|g^{(1)}| = 1$
- Incoherent light $|g^{(1)}| = 0$

= 200

Optical/IR interferometry

Temporal coherence

 $\vec{r_1} = \vec{r_1} \text{ and } t_1 \neq t_2$:

- average correlation between the value of the wave and itself delayed by τ
- Weiner-Khinchin theorem: The normalised value of the temporal coherence function is equal to the Fourier transform of the normalised spectral energy distribution of the source.

Spatial coherence

 $\vec{r_1} \neq \vec{r_1} \text{ and } t_1 = t_2$:

- average correlation at different locations
- Van Cittert-Zernike theorem: For sources in the far field the normalized value of the spatial coherence function is equal to the Fourier transform of the normalised sky brightness distribution.

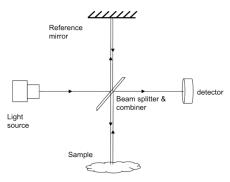
ELE NOR

A B K A B K

Introduction to interferometry	Radio interferometry	Optical/IR interferometry	Intensity interferometry	References

Visibility (fringe contrast)

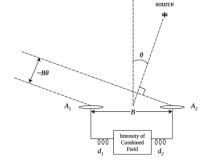
$$V = \frac{I_{min} - I_{max}}{I_{min} + I_{max}} = |g^{(1)}(\vec{r_1}, t_1, \vec{r_2}, t_2)|$$


Key elements of astronomical interferometry:

- Brightness distribution of a source can be represented as a Fourier decomposition
- Exploitation of the van Cittert-Zernike theorem
- Measurements at different sample points → visibility function at different baselines

Introduction to interferometry	Radio interferometry	Optical/IR interferometry	Intensity interferometry	References

Michelson Interferometer:

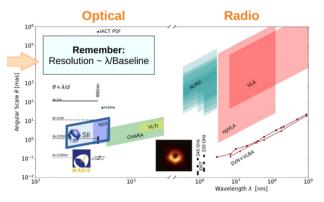

- An incident light beam is split by a beam splitter into two partial beams.
- The beams propagate along the interferometer arms and are reflected by the mirror/sample
- The are reunited by the combiner; after that they enter the observing telescope
- Interference vanishes when the arm difference exceeds the coherence length

https://www.researchgate.net/figure/Schematic-of-Michelson-Interferometer_fig2_258666630

Sac

Introduction to interferometry	Radio interferometry	Optical/IR interferometry	Intensity interferometry	References

Frank Rotondo. "Imaging with Amplitude and Intensity Interferometers". In: (June 2004),p. 14.


Astronomical interferometer:

- A set of collectors, A₁ and A₂ to sample radiation from source
- Distance between collectors is baseline B
- Transport system for radiation to laboratory (optical path d₁ and d₂)
- Device to combine electric fields sampled by the collectors.
- Detector to sample combined fields.

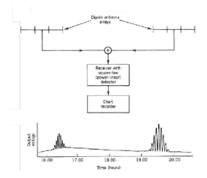
Introduction to interferometry	Radio interferometry ●000000	Optical/IR interferometry	Intensity interferometry	References

三日 のへの

Introduction to interferometry	Radio interferometry ○●○○○○○	Optical/IR interferometry	Intensity interferometry	References

MAGIC Collaboration Meeting June 2021, Tarek Hassan

ъ

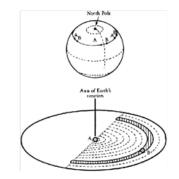

• • • • • • • • •

= 200

Introduction to interferometry	Radio interferometry	Optical/IR interferometry	Intensity interferometry	References

Brief history of radio interferometry:

- Michelson-Pease stellar interferometer in 1921
- First astronomical observation by a radio interferometer in 1946 by Ryle and Vonberg



Anthony Thompson, James Moran, and George Swenson Jr. Interferometry and Synthesis in Radio Astronomy. Vol. -1. Jan. 1991. ISBN : 978-3-319-44429-1. DOI :10.1007/978-3-319-44431-4.

Introduction to interferometry	Radio interferometry 000●000	Optical/IR interferometry	Intensity interferometry	References

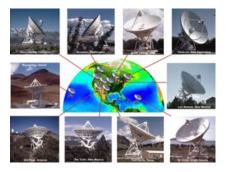
Brief history of radio interferometry:

- Michelson-Pease stellar interferometer in 1921
- First astronomical observation by a two-element interferometer in 1946 by Ryle and Vonberg
- Earth rotation synthesis
 1962 & development of synthesis arrays

Anthony Thompson, James Moran, and George Swenson Jr. Interferometry and Synthesis in Radio Astronomy. Vol. -1. Jan. 1991. ISBN : 978-3-319-44429-1. DOI :10.1007/978-3-319-44431-4.

Sac

Introduction to	interferometry


Optical/IR interferometry

Intensity interferometry

References

Brief history of radio interferometry:

- Michelson-Pease stellar interferometer in 1921
- First astronomical observation by a two-element interferometer in 1946 by Ryle and Vonberg
- Earth rotation synthesis 1962 & development of synthesis arrays
- Very-long-baseline interferometry (VLBI)

https://astronomy.swin.edu.au/cosmos/v/Very+Long+Baseline+Array

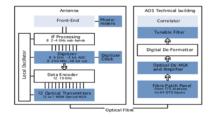
Optical/IR interferometry

Intensity interferometry

References

Atacama Large Millimeter/submillimeter Array (ALMA)

- Currently largest radio telescope in the world on the Chajnantor Plateau in the Atacama Desert in Chile since 2004
- 66 antennas: fifty-four 12-meter diameter antennas and twelve 7-meter diameter antennas
- Antennas can be moved between different pads (150 m 16 km)


https://www.almaobservatory.org/en/outreach/downloads/

Optical/IR interferometry

Structure of ALMA

https://www.almaobservatory.org/en/outreach/downloads/

https://www.almaobservatory.org/en/about-alma/how-alma-works/technologies/optic-fiber-1000-km/

Receiver:

- Three-stage cryo-refrigator
- 10 frequency bands from 8.6 mm - 0.32 mm wavelength
- Water vapor radiometer

Optic fiber:

- 192 antenna pads
- two local oscillators for each antenna
- antenna pads and correlator connected by optic fiber

Correlator:

- Installed in AOS Technical Building
- Process data from up to 504 antenna pairs

Introduction to interferometry	Radio interferometry	Optical/IR interferometry ●○○○	Intensity interferometry	References

Optical/IR interferometry

三日 のへの

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction to interferometry	Radio interferometry	Optical/IR interferometry	Intensity interferometry	References
		0000		

Interferometer design

Relay optics:

- After light collection, light must be transported from telescope to central beam combining
- If propagating in air, significant dispersion
- High reflectivity needed

Delay line:

movable delay line to compensate for changing geometrical delay

Fringe tracking

white-light fringe is actively tracked

Sac

Introduction to interferometry Radio inte	rferometry Optical/IR interferon	netry Intensity interferometry	References
	0000		

Very Large Telescope Interferometer (VLTI)

- Four Unit Telescopes (UT) with main mirrors of 8.2 m diameter and four movable 1.8 m diameter Auxiliary Telescopes (AT) at ESO's Paranal Observatory, Chile
- At present baselines up top 140 meters
- Light from different telescopes is combined by using a complex system of mirrors in underground tunnels

https://www.eso.org/public/images/_DSC7227-CC/

Introdu 0000	ction to interferometry	Radio interferometry	Optical/IR interferometry ○○○●	Intensity interferometry	References
	GRAVITY				
	second-gen	eration instrument o	f VLTI observing since	2016	

- Combines light of four VLT telescopes
- Can be operated as two interferometers: one observes bright star, second observe object with long exposure time

Calibration unit Fiber control unit

https://www.eso.org/public/images/gravity-cc/

Fiber coupler Acquisition camera Integrated Optics

Spectrometer Metrology injection

Gravity Collaboration. "First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer". In: 602, A94 (June 2017), A94. DOI :10.1051/0004-6361/201730838. arXiv: 1705.02345 [astroph.IM].

Introduction to interferometry	Radio interferometry	Optical/IR interferometry	Intensity interferometry ●○○○○○○	References

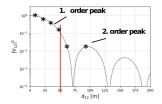
Intensity Interferometry

三日 のへの

Optical/IR interferometry

Amplitude interferometry

- first-order measurement
- correlation between electromagnetic fields in two different locations



Intensity interferometry

- second-order measurement
- correlation between pairs of point sources
- exploit correlation and anti-correlation effects in intensity (Hanbury Brown and Twiss effect)

Observed interference pattern can be described by visibility:

$$g^{(2)} = 1 + |g^{(1)}|^2 = \frac{\langle I_1 \cdot I_2 \rangle}{\langle I_1 \rangle \cdot \langle I_2 \rangle}$$

MAGIC Collaboration Meeting June 2021, Thomas Schweizer

Optical/IR interferometry

Intensity Interferometer

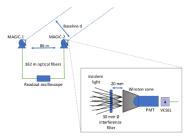
- \blacksquare Correlation does not depend on the phase difference of the light \rightarrow less stringent requirements on mechanics and optics
- Poor sensitivity (second order effect) → need of large light collectors

Narrabi intensity interferometer:

- First optical intensity interferometer in 1963 in Narrabi, Australia
- First measurement of star diameter at optical wavelengths
- After first success this technique was abandoned

BROWN, R. Stellar Interferometer at Narrabri Observatory. Nature 218, 637–641 (1968)

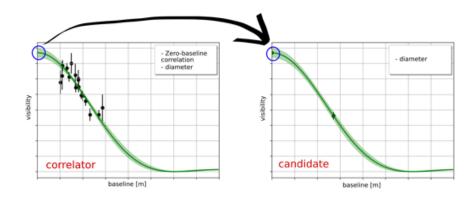
Introduction to interferometry	Radio interferometry	Optical/IR interferometry	Intensity interferometry	References
Large light collectors less accuracy in controlling optical path atmospheric turbulence/some background ok	Atmo Teles inten • Actu Cher by pa • Cher have • Inter obse	Imaging ospheric Cherenkov scopes (IACT) for usity interferometers ally to detect renkov light emitted article showers renkov telescopes huge light collectors ferometry prvation can be done ng full moon periods	Particle shower	~ 10 km


・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

MAGIC interferometer:

- Two IACTs with 17 m diameter mirror dishes at the Roque de los Muchachos on La Palma Observatory, Spain
- Two pixels in telescope MAGIC 1 and MAGIC 2
- One pixel to measure nightsky background (moonlight); Star light is focussed to second pixel
- Correlation within a telescope / Zero-baseline correlation

MAGIC Collaboration Meeting June 2021, Thomas Schweizer



Optical intensity interferometry observations using MAGIC imaging atmospheric Cherenkov telescopes. MAGIC collaboration. 2019

(日)

ELE NOR

Data analysis - Visibility function

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ■ ■ ● ● ●

References

Introduction to interferometry	Radio interferometry	Optical/IR interferometry	Intensity interferometry	References

Summary

- Interferometers provide best resolution of all telescope types
- Astronomical interferometry: exploit Van Cittert-Zernike theorem
- Synthesis arrays: array of telescopes work as one giant telescope
- Two kinds of interferometry: amplitude (first order) and intensity interferometry (second order)
- Interferometry in optical regime very challenging (therefore intensity interferometry promising)
- Cherenkov telescope array have potential as optical interferometers

Thank you :D

Anthony Thompson, James Moran, and George Swenson Jr. Interferometry and Synthesis in Radio Astronomy. Vol. -1. Jan. 1991. ISBN: 978-3-319-44429-1. DOI: 10.1007/978-3-319-44431-4.

John D Monnier. "Optical interferometry in astronomy". In: *Reports on Progress in Physics* 66.5 (2003), pp. 789–857. DOI: 10.1088/0034-4885/66/5/203. URL: https://doi.org/10.1088/0034-4885/66/5/203.

Harry Paul. Introduction to Quantum Optics: From Light Quanta to Quantum Teleportation. Ed. by IgorTranslator Jex. Cambridge University Press, 2004. DOI: 10.1017/CB09780511616754.

Frank Rotondo. "Imaging with Amplitude and Intensity Interferometers". In: (June 2004), p. 29.

S. Le Bohec and J. Holder. "Optical Intensity Interferometry with Atmospheric Cerenkov Telescope Arrays". In: *The Astrophysical Journal* 649.1 (2006), 399–405. ISSN: 1538-4357. DOI: 10.1086/506379. URL: http://dx.doi.org/10.1086/506379.

Chris Haniff. "An introduction to the theory of interferometry". In: *New Astronomy Reviews* 51.8 (2007). Observation and Data Reduction with the VLT Interferometer, pp. 565–575. ISSN: 1387-6473. DOI: https://doi.org/10.1016/j.newar.2007.06.002. URL: https://www.sciencedirect.com/science/article/pii/S1387647307000619.

EL OQO

A B K A B K

Image: Image:

Foellmi, C. "Intensity interferometry and the second-order correlation function $g^{(2)}$ in astrophysics". In: A&A 507.3 (2009), pp. 1719–1727. DOI: 10.1051/0004-6361/200911739. URL: https://doi.org/10.1051/0004-6361/200911739.

Gravity Collaboration. "First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer". In: 602, A94 (June 2017), A94. DOI: 10.1051/0004-6361/201730838. arXiv: 1705.02345 [astro-ph.IM].

Vakili F. Lai O. et al. Rivet JP. "Optical long baseline intensity interferometry: prospects for stellar physics". In: *Exp Astron* 46 (2018), 531–542. URL: https://doi.org/10.1007/s10686-018-9595-0.

V. A. Acciari et al. "Optical intensity interferometry observations using the MAGIC imaging atmospheric Cherenkov telescopes". In: *Mon. Not. Roy. Astron. Soc.* 491.2 (2020), pp. 1540–1547. DOI: 10.1093/mnras/stz3171. arXiv:1911.06029 [astro-ph.IM].

About ALMA. https://www.almaobservatory.org/en/about-alma/origins/. Accessed: 2021-06-15.

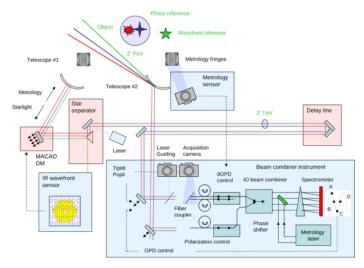
GRAVITY. https://www.eso.org/public/teles-instr/paranalobservatory/vlt/vlt-instr/gravity/. Accessed: 2021-12-03.

VLA Basics & Tech. https://public.nrao.edu/telescopes/vla/. Accessed: 2021-06-15.

Sar

イヨトイヨト

Introduction to interferometry	Radio interferometry	Optical/IR interferometry	Intensity interferometry	References
000000	0000000	0000	0000000	

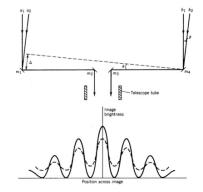


What is an Interferometer?

https://www.ligo.caltech.edu/page/what-is-interferometer. Accessed: 2021-06-15.

EL OQO

イロト イヨト イヨト イヨト



Gravity Collaboration. "First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer". In: 602, A94 (June 2017), A94. DOI :10.1051/0004-6361/201730838. arXiv: 1705.02345 [astro-ph.IM].

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ■ ■ ● ● ●

Brief history of radio interferometry:

 Michelson-Pease stellar interferometer in 1921

Anthony Thompson, James Moran, and George Swenson Jr. Interferometry and Synthesis in Radio Astronomy. Vol. -1. Jan. 1991. ISBN : 978-3-319-44429-1. DOI :10.1007/978-3-319-44431-4.

Interferometric observables

fringe contrast:

fringe phase:

$$V = \frac{I_{min} - I_{max}}{I_{min} + I_{max}} = |g^{(1)}(\vec{r_1}, t_1, \vec{r_2}, t_2)| \quad (2)$$

Position of central fringe with respect to zero optical path difference

Key elements of astronomical interferometry:

- Brightness distribution of a source can be represented as a Fourier decomposition
- Exploitation of the van Cittert-Zernike theorem
- Measurements at different sample points → visibility function at different baselines
- Fourier inversion to recover source brightness distribution

ELE NOR

https://public.nrao.edu/telescopes/vla/

Very Large Array (VLA)

- Inaugurated in 1980 in New Mexico, USA
- 28 antennas with 25 m diameter (27 in use)
- antennas arranged in "Y"-shape to have many different and long baselines
- telescopes are on rails

Dave Finley, courtesy NRAO and Associated Universities, Inc.

Receiver:

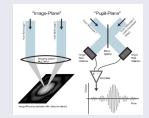
- Each antenna use 10 receivers depending on wavelength band
- Receivers are supercooled

Array:

- Three times a year telecopes are moved
- Baselines between 1.0-36.4 km

Correlator:

- Incoming radio waves are amplified and digitized
- Data is processed by supercomputer


= ~ Q Q

Interferometer design

Relay optics:

- After light collection, light must be transported from telescope to central beam combining
- If propagating in air, significant dispersion
- High reflectivity needed

Beam combination:

John D- Monnier. "Optical interferometry in astronomy". In: Reports on Progress in Physics. 2003. DOI: 10.1088/0034-4885/66/5/203

Fringe tracking

white-light fringe is actively tracked

Delay line:

- sidereal motion due to earth's rotation
- movable delay line ro compensate for changing geometrical delay

- L

Cherenkov Telescops as Interferometers

MAGIC:

- Two IACTs with 17 m diameter mirror dishes at the Roque de los Muchachos on La Palma Observatory, Spain
- Parabolic mirrors
- Active mirror controll

https://www.researchgate.net/figure/A-picture-of-the-two-MAGIC-telescopes-at-the-Roque-de-los-Muchachosobservatory_fig4_228467537

VERITAS:

- Four IACTs with 12 m diameter mirror dishes at the Fred Lawrence Whipple Observatory inn Amado, USA
- Davies Cotton design

https://astro.desy.de/gamma_astronomy/veritas/index_eng.html

5 1 - A C

.