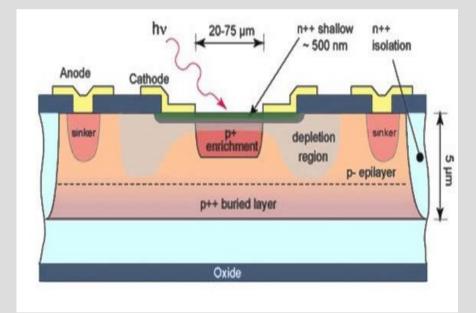
Developments in photon detection: Silicon Photo-Multipliers and their applications

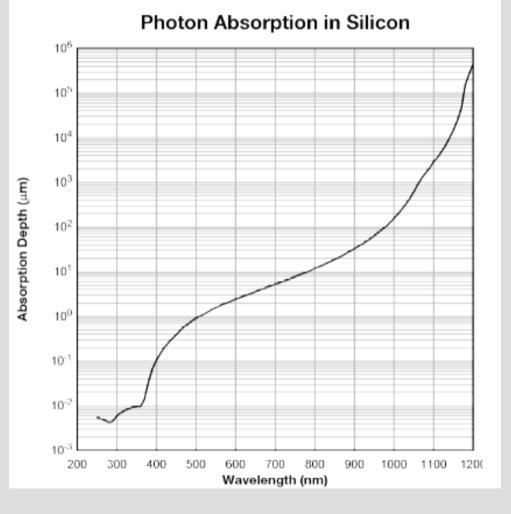
> PhD in Experimental Physics XXXIV ciclo


Professor: Pier Simone Marrocchesi

> Student: Andrea Vanella

#### **Single Photon Avalanche Photodiode**

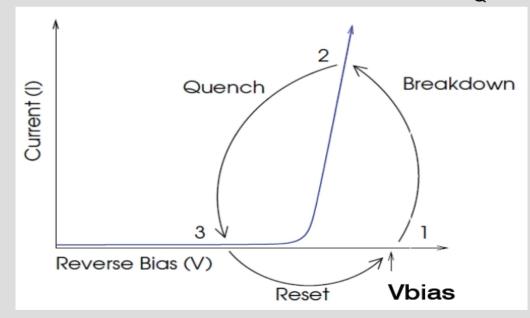
SPADs are semiconductor devices based on a p–n junction reverse-biased at a voltage  $V_{bias}$  greater than breakdown voltage  $V_{BD}$ , Geiger mode.


The Si p-n junction creates a depletione region which is free of mobile charge carriers.



#### Single Photon Avalanche Photodiode

When a photon is absorbed in Si it will create an electron-hole pair. Because of the reverse bias applied, the electric field (> $5\cdot10^5$ V/cm) generated across the depletion region will accelerate the charge carriers towards the anode (holes) or cathode (electrons).


Therefore an absorbed photon will result in a net flow of current.

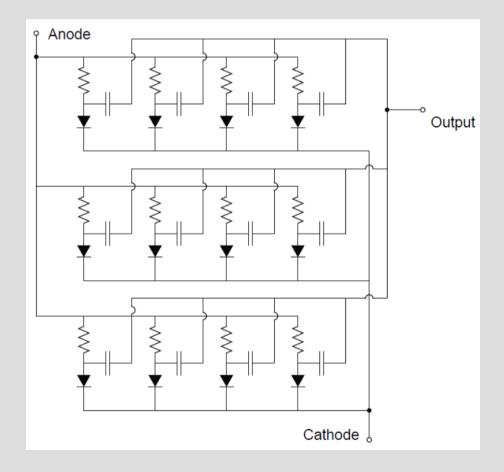


With high  $V_{bias}$  the charge carriers carry enough  $E_{\kappa}$  to create secondary electron-hole pairs, impact ionization. A single photon creates an avalanche ionization, amplifying the original pair into a macroscopic current flow.

The current must be 'quenched', achieved with a resistor  $R_{o}$ .

Recovery time: time needed to recovery the bias value

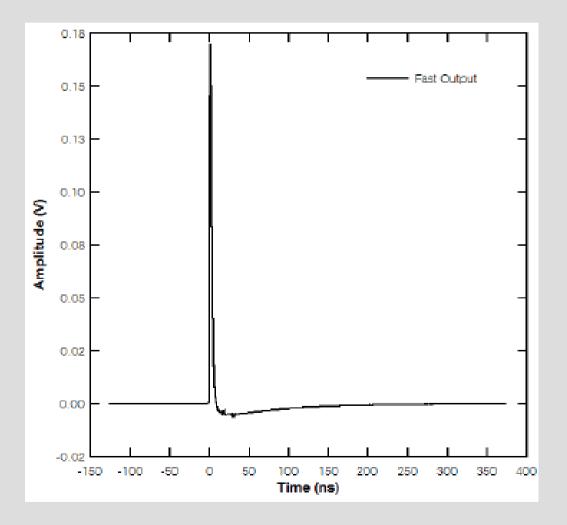



### **SPADs Drawbacks**

- Binary device, on-off state
- No proportionality
- Same amount of charge regardless the number of incident photons



#### **Silicon Photomultiplier**


- Dense array of indipendent SPAD connected in parallel
- Proportionality
- Densities between 100 and 1000 microcells/mm<sup>2</sup>



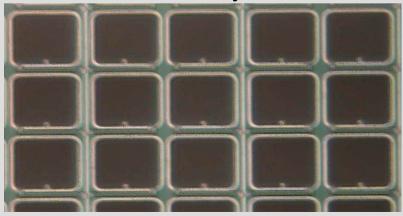
#### **Recovery Time**

 $\mathbf{T}_{RC} = C_{pixel} \left( R_q + R_s N \right)$ 

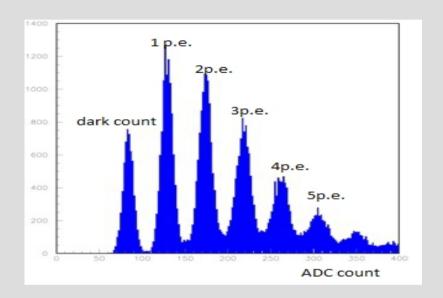
- C<sub>pixel</sub> capacitance of a microcell
- $R_{o}$  quenching resistor
- R<sub>s</sub> other resistances in series with detector
- # of microcells

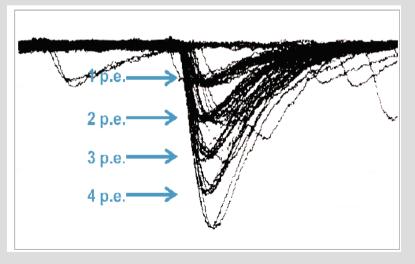


#### **Gain and Fill Factor**


The **gain** depends on the pixel capacitance and the operation voltage

Q is the output charge of a single pixel


$$G = \frac{Q}{q}$$
$$Q = C_{pixel} (V_{bias} - V_{BD}) = C_{pixexl} \Delta V$$


**Fill Factor:** Active surface/Total surface

- Larger fill factor: higher PDE (wavelegth dependent) and gain, higher capacitance, larger recovery time
- Smaller fill factor: lower PDE and gain, lower capacitance, shorter recovery time



#### **Advantages and drawbacs**



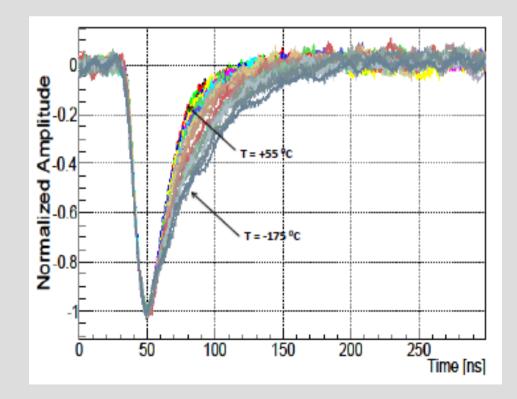


#### Advantages

- High gain (10<sup>5</sup>-10<sup>6</sup>)
- Low voltage operation (<100V)</li>
- Insensitive to magnetic fields
- High PDE

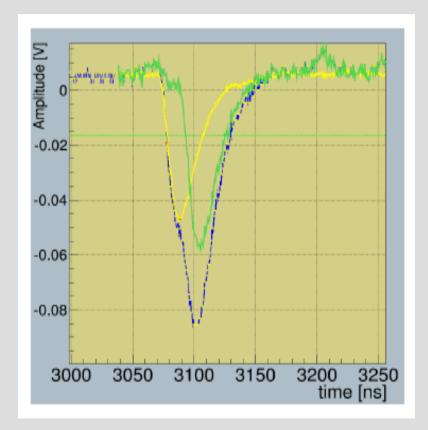
#### Drawabcks

- Only small size available (~mm<sup>2</sup>)
- High dark count rate (100kHz-1MHz/mm<sup>2</sup>)


Application for medical imaging: i.e. detecting cancer cells

- Compactness
- Low operating voltage
- PET/MRI
  - Insensitive to magnetic field

#### **Analysis of SiPM characteristics**


Nagai et al. presented a Data Analysis based on ROOT SiPM in  $N_2$  atmosphere and controlled T from -175°C to 55°C

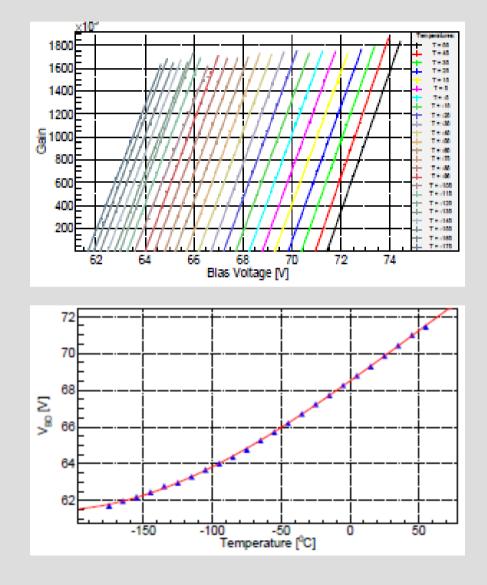
Attenueted laser to have few photons per pulse



#### **Analysis of SiPM characteristics**

- Template creation, find the typical SiPM pulse
- Pulse finding procedure, determine time intervals containing pulses
- Template substraction, reconstruct pulses in "train of pulses"
- Pulse characterization, calculate SiPM pulses parameters




#### **Analysis of SiPM characteristics**

- Time position,
- amplitude
- rise time
- recovery time
- charge Q

$$f(t, a, \tau) = a \exp(-t/\tau)$$

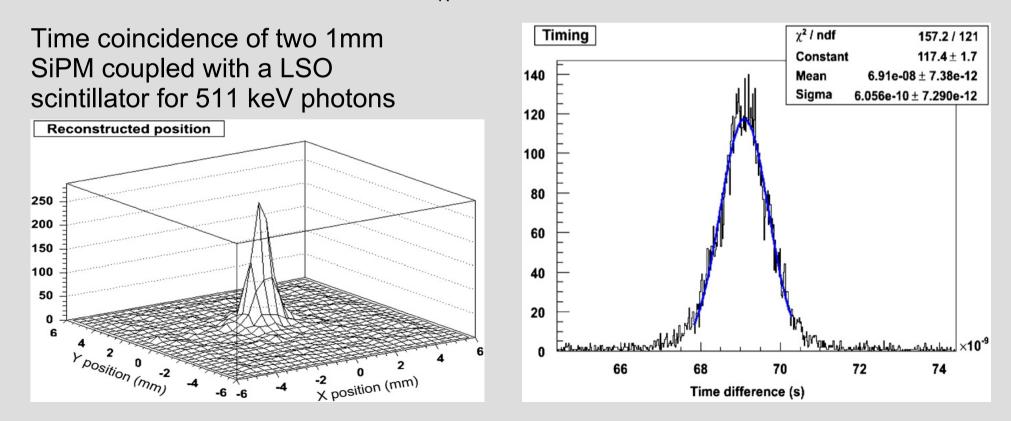
$$Q = \int I(t) dt = \frac{1}{R \times G_{amplifier}} \int V_{pulse}(t) dt$$

Gain: G=Q/e



# **SiPM in Medical Field**

Molecular imaging ----- PET/MRI combination i.e. decting cancer cells SiPM:


- Insensitive to magnetic field
- Low operating voltage
- Compactness

#### SiPM for PET

SiPM high dark count rate (1-3 Mhz/mm<sup>2</sup>)

but PET is NOT a single p.e. technique

The dark count rate at 3-4 p.e.at  $T_{R}$  goes down at ~kHz



## **Advantages and Pitfalls**

- High gain: no need of preamplifier
  - Fast time properties
  - Low noise
  - More flexible design
- PET/MRI simultaneous imaging

- High number of channels, needing of high performance electronics
- Dependence of  $V_{_{\rm BD}}$  with T, and so Gain and PDE
- Cost (10 times PSPMT per mm<sup>2</sup>)

## **SiPM in VHE astrophysics**

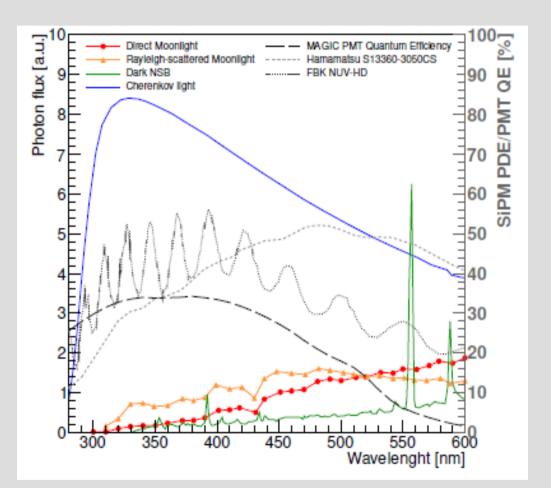
Imaging Atmospheric Cherenkov Telescopes:

Changelling

- Short duration (~ns)
- Low light intensity (few p.e. per pixel)

SiPM vs PMT

- Higher PDE
- Better time resolution
- More compact
- Lower operation voltage


#### **SiPM in VHE astrophysics**

Peak of Cherenkov light at 350nm

Night Sky Background peak at about 550nm

Higher PDE of Sipm in red part BUT new SiPM enhanced in NUV band with a PDE ~50% around 350nm (FBK NUV-HD) and optical cross-talk ~5%

T variation <1.5°C during a night



# **SiPM in VHE astrophysics**

Limited physical size

Pixels made of several SiPM, output summed with operational amplifiers as well the noise

- Reduction in capacitance but still increase with number of SiPM Light-Trap pixel: SiPM coupled with a PMMA doped with WLS
  Isotropically emitted red-shifted photons
  - Low cost
  - Capacitance does not

increase with size

- Degradation in detection efficiency
- Time properties

# CONCLUSION

Advanteges:

- High gain
- Low  $V_{op}$
- Insensitive to magnetic field
- High PDE

Drawbacks:

- Small size
- Cost
- Dark count rate

#### References

[1] sensL. An Introduction to the Silicon Photomultiplier Introduction to SiPM. *Tech*. Note 1–16 (2011).

[2] Nagai, A., Dinu-Jaeger, N. & Para, A. Silicon photomultiplier for medical imaging -Analysis of SiPM characteristics. ArXiv 3–6 (2019).

[3] Del Guerra, A. et al. *Advantages and pitfalls of the silicon photomultiplier (SiPM) as photodetector for the next generation of PET scanners.* Nucl. Instruments Methods Phys. Res. A 617, 223–226 (2010).

[4] D. Guberman and R. Paoletti 2020 JINST 15 C05039

[5] Ahnen, M. L. et al. (2017). Astroparticle Physics, 94, 29-41.

# Thanks for your attention!!!