
Autocovariance of wide sense 
stationary random processes

A tool for characterizing cross-talking effects in pixelated X-ray photon counting detectors
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Theoretical background
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Random variable

• A random variable is the output of a random event, e.g. toss a coin, dice roll etc.

The exact outcome of a random event is unpredictable

?
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Probability distribution
The exact outcome of a random event is unpredictable, however it is possible to 
determine its statistical properties!
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a P(a)

2 1/36

3 2/36

4 3/36

5 4/36

6 5/36

7 6/36

8 5/36

9 4/36

10 3/36

11 2/36

12 1/36

• If a random event ‘a’ is repeated many times, it will produce a distribution of outcomes
• This distribution can be mathematically described by a probability distribution p(a)

Example: outcome of the sum of two dice

N=100 random events N=1000 random events
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Expected value

• For a probability distribution, the Expected value (mean) is defined as follow:

𝜇 = 𝐸 𝑎 = න
−∞

+∞

𝑎 ∙ 𝑝 𝑎 𝑑𝑎
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E is a linear operator:

• G(a) = f(a) + h(a) → E(G) = E(f) + E(h)

• G(a) = k · h(a) → E(G) = k · E(h)
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Moments of a distribution
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The features of a probability distribution can be summarized by few key quantities

𝜇 = 𝐸 𝑎 , 𝑀𝑛 = 𝐸 |𝑎 − 𝐸{𝑎}|𝑛

• Variance (n=2) → spread around 𝜇

𝜎2 = 𝐸 |𝑎 − 𝐸{𝑎}|2 = 𝐸 𝑎2 − 𝐸 |𝐸{𝑎}|2

• Skewness (n=3)→ asymmetry

γ = 𝐸 |𝑎 − 𝐸{𝑎}|3

• Kurtosis(n=4)→ tails

𝑘 = 𝐸 |𝑎 − 𝐸{𝑎}|4
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Autocorrelation and Autocovariance

• If a(x) is a complex random variable expressed as a function of x, the autocorrelation of a(x) is 
defined as follows:

𝑅 𝑥′, 𝑥′ + 𝑥 = 𝐸{𝑎(𝑥′)ത𝑎(𝑥′ + 𝑥)}

The autocorrelation describes the correlation of 𝒂 𝒙′ with itself at a location displaced by x

• Similarly, the autocovariance is defined as follows

𝐾 𝑥′, 𝑥′ + 𝑥 = 𝐸 ∆𝑎 𝑥′ ∆𝑎 𝑥′ + 𝑥 = 𝑅 𝑥′, 𝑥′ + 𝑥 − 𝐸 𝑎 𝑥′ 𝐸{ത𝑎(𝑥′ + 𝑥)}
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Random events for X-ray photon 
counting detectors (PCD)
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Photon counting detectors

If the detector matrix is illuminated by photon beam with an uniform brightness such that the 
average number of photons per element is N. The proportion of pixels in a large matrix receiving k
photons is governed by the Poisson distribution:

𝑝 𝑘 =
𝑁𝑘𝑒−𝑁

𝑘!
With 𝜇 = 𝑁 and 𝜎 = 𝑁
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Main properties
linearity 
shift-invariant response
stationary response
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A PCD counts the number of incident photons
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Wide sense stationary (WSS) random processes
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If a is a real random variable for which the expected value and variance are stationary, the 
expected value E{a} is given by the sample mean:

𝜇 = lim
𝑀→∞

1

𝑀
σ𝑚=1
𝑀 𝑎𝑚 ;         𝜎2 = lim

𝑀→∞

1

𝑀
σ𝑚=1
𝑀 (𝑎𝑚−𝐸{𝑎𝑚})
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Example:

For a given pixel, different acquisitions are different realization of the same random process 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

30 34 28 39 37 32 31 24 24 36 30 26

Expected values
𝜇 = 30.9; 𝜎 = 4.9

• WSS processes (Stationary expectation value and autocorrelation):

𝑅 𝑥′, 𝑥′ + 𝑥 = 𝑅 𝑥 , 𝐾 𝑥′, 𝑥′ + 𝑥 = 𝐾(𝑥)

𝐼𝑛𝑝𝑢𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑁 = 30

Pixel 
record
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Ergodic WSS process

Ergodicity: ‘expected values can be determined equivalently from 
ensemble averages or spatial averages’
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Spatial average

Example
𝐼𝑛𝑝𝑢𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑁 = 30

Expected values
𝜇 = 30.9; 𝜎 = 4.9
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Autocorrelation and 
Autocovariance interpretation
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Ideal case

Each pixel works independently
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00 0 +1 0 0 0

Autocorrelation
𝑅 𝑥 = 𝐸{𝑎(𝑥′)ത𝑎(𝑥′ + 𝑥)}Random Poisson distr. N=100

Autocovariance
𝐾 𝑥 = 𝑅 𝑥 − 𝐸{𝑎(𝑥′)ത𝑎(𝑥′ + 𝑥)}

𝜎2 = 𝐾(0)
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Wiener theorem: noise power spectrum (NPS)

The autocovariance of a WSS random process, K(x), provides a complete description of the second-moment 
statistics in the spatial domain. In the spatial-frequency domain, the same statistics are described by the 
Wiener spectrum, equal to the Fourier transform of the autocovariance function.
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𝑁𝑃𝑆 𝑓 = 𝐹𝑇{𝐾(𝑥)}→ 𝜎2 = 𝑁𝑃𝑆 𝑓 𝑑𝑓

autocovariance

Spatial domain Freq. domain

𝐹𝑇

NPS(f) autocovariance

Spatial domain Freq. domain

𝐹𝑇

NPS(f)
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How to measure NPS and autocovariance
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A large number of ‘samples’ (→ ∞) is required
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Simulation study 
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Source of correlations: charge sharing
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Monte Carlo simulation of multiple counts in PCDs

Settings

• PCD (255x255)

• Pixel side 100𝜇𝑚

MC simulation

• Each pixel receives Ni photons randomly extracted 
from a Poisson distribution with 𝜇 = 𝑁0

• The percentage of multiple counts (double, triple, etc.) 
is defined by the user
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Example of clusters generated by multiple 
counts (low flow 0.01 photons per pixel)

Triple 
counts

Single 
counts

Double 
counts
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Case 1

• N0=500; no multiple counts 
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FT

FT-1
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FT

FT-1

Case 2
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FT

FT-1
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• N0=500; 50% single counts; 50% double counts

FT

FT-1



• N0=500; 1/3 single, double and triple counts

FT

FT-1

FT

FT-1

Case 3
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FT

FT-1
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Analysis
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Correlation length 
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Xcorr (µm)

Case 1 100

Case 2 150

Case 3 190

Case 1 Case 2 Case 3 

xcor xcor
xcor

No multiple counts 50% single/double 1/3 single/double/triple



Experimental case
Images acquired with Pixirad-1/pixie-iii
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Pixie-iii acquisition modes
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+1 +1

+1+1

Pixel mode NPISUM mode
(charge-sharing correction)

+1
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Experimental measurements
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Pixel mode NPISUM mode

V. Di Trapani et al., Characterization of the acquisition modes implemented in Pixirad-1/Pixie-III X-ray Detector: 
Effects of charge sharing correction on spectral resolution and image quality, NIM(A), Vol 955 (2020)
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Monochromatic beam E=26 keV
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