Peculiarities and applications of narrow-line magneto optical traps for neutral atoms

Alessandro Fregosi

Università di Siena

Low energy physics seminar 35th cycle prof. E. Mariotti

[Generalities](#page-2-0)

[The doppler cooling and trapping](#page-4-0)

[Narrow line cooling](#page-10-0)

[Experiments](#page-12-0)

- Bose and Einstein predicted a new state of matter
- Hänsch and Schawlow and Wineland and Dehmelt proposed the optical molasses
- Phillips and Metcalf realized the Zeeman slower
- Chu realized the first magneto optical trap;
- Chu, Cohen-Tannoudji and Phillips received the Nobel Prize;
- Cornell, Wieman, and Ketterle received the Nobel Prize

Mot characteristics:

- Low temperatures
- high densities
- relatively simple and robust
- are the workhorse of most cold atom experiments.

Application:

- Degenerate quantum gases Lanthanides: Er, Dy, Yb...
- Atomic clocks

bosonic alkaline earth elements ⁸⁸Sr...

The rate at witch an atom at rest absorbs photons is given by:

$$
R_s = \frac{\gamma}{2} \frac{s}{1+s+4\delta^2/\gamma^2}
$$

where $\delta = \omega_L - \omega_A$, γ is the transition linewidth and s is the saturation parameter

- an atom absorbs a photon with $\hbar\omega_I$ energy
- emits a photon with $\hbar\omega_A$ energy
- the atom momentum changes by $\vec{p} = \hbar \vec{k}$
- the atom is subjected to a force $\vec{F}_{\rm s} = \hbar \vec{k} R_{\rm s}$

Principles of operation

The detuning *δ* is velocity dependent via the Doppler effect: $\omega'_{\rm L} = \omega_{\rm L} - \vec{k} \cdot \vec{v} \rightarrow \vec{F} = -\alpha \vec{v}$ The detuning can be made position dependent using a magnetic field gradient:

 $\omega'_{\rm A} = \omega_{\rm A} + \frac{\mu \nabla B \, z}{\hbar}$

Credit: E. L. Raab et al Phys. Rev. Lett. 59, 2631 (1987)

Optical Scheme

Credit: Dreon et. al. J. Phys. B: At. Mol. Opt. Phys. 50 (2017) Credit: The Ye group and Brad Baxley, JILA

Doppler temperature

Experimental data in 3D

Credit: R. Chang et. al. Phys. Rev. A 90 (6), pp.063407 (2014)

Sub-Doppler cooling of Er

Credit: A. J. Berglund et. al. Phys. Rev. A 76, 053418 (2007)

$$
E_{\rm r} = \frac{\hbar^2 k^2}{2m} \qquad \Rightarrow \qquad \omega_{\rm r} = \frac{\hbar k^2}{2m}
$$

Atom internal state evolve according to *γ*:

$$
t_{\rm int}=1/\gamma
$$

Atom external time:

$$
\textit{kv}=\gamma\quad\text{and}\quad\textit{a}=v_r\gamma\implies\textit{t}_\text{ext}=1/\textit{kv}_\text{rec}=\hbar/2\textit{E}_r
$$

Broadband Narrow line $t_{\rm ext} \gg t_{\rm int} \hspace{1.5cm} t_{\rm ext} \simeq t_{\rm int}$ $\gamma \gg 2\omega_r$ $\gamma \simeq 2\omega_r$

Narrow line MOT

- Optimal detuning $\delta \simeq 3\omega_r$
- Predicted final temperature $\simeq 1.5 E_{\rm r}/k_{\rm B}$
- Semiclassical theory is no longer valid
- velocity distribution is a power law $P(\nu) \propto \left| \nu \right|^{-2 \frac{|\delta|}{\omega_{\rm r}}}$
- small capture velocity
- gravity can't be neglected: $R = \frac{\tilde{\hbar}\gamma k}{2}$ 2 1 $\frac{1}{mg}\simeq 1$

Credit: Castin et. al. J. Opt. Soc. Am. B/Vol. 6, No. 11 (1989)

Narrow line 88Sr MOT

Credit: Chalony et. al. PRL 107, 243002 (2011)

Narrow line 88Sr MOT

461 nm: ${}^{1}S_{0} \rightarrow {}^{1}P_{1}$ - *γ* = 32 MHz - *ω*r*/*2*π* = 10*.*7 kHz $-T_D = 768 \,\mu K$ $\frac{\hbar \gamma k}{2mg} = 43 \times 10^3$ 689 nm: ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ - *γ* = 7*.*5 kHz - *ω*r*/*2*π* = 4*.*7 kHz $-T_D = 0.3 \mu K$ - $\frac{\hbar \gamma k}{2mg} = 16$

Credit: Loftus et. al. Phys. Rev. Lett. 93, 073003 (2004)

Narrow line 88Sr MOT

Credit: Loftus et. al. PRA 70, 063413 (2004)

Lanthanides

166_{Er} MOT

 $\mu = 7\mu_B \implies F = F_s - \mu |\nabla B| - mg, \qquad \mu = gm_i\mu_B$

$$
\omega_{\rm r}/2\pi=1.7\text{kHz} \ , \ \hbar\gamma k/2mg=7
$$

- the $m_i = j$ state is a "low field seeking state"
- For $|\nabla B|\neq 0$ $F\rightarrow F_{\rm s}+ {\it g} m_{\rm j}|\nabla B|$

Credit: Berglund et. al. PRL 100, 113002 (2008)

166_{Er} MOT

 $T = 2\mu$ K Atoms are polarized in the $J = 6$ $m_i = 6$ state

Credit: Berglund et. al. PRL 100, 113002 (2008)

162 _{Dy} MOT

- 626 nm 136 kHz transition
- *ω*r*/*2*π* = 3*.*1kHz, $\hbar \gamma k/2mg = 171$
- $-\delta = 30\gamma$
- 3×10^8 atoms at $T = 20 \mu K$
- Mot vertical position self-adjust for $F_s = mg$

Credit: Dreon et. al. J. Phys. B: At. Mol. Opt. Phys. 50 (2017)

Conclusions

Narrow line MOT:

- Provide low temperatures
- Gravity plays an important role
- Require preliminary cooling stages

From Wikimedia Commons. Author Xcodexif