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I- A general overview on photonic crystals



1. What are photonic crystals ?

Photonic crystals
_ Periodic
Light structures

N/

Periodic structures that interacts with light



Why would one be interested in the interaction of light with a periodic structure?

—_— Because it gives complete control over light propagation

What are the advantages over other technologies that also control light propagation like the usual waveguides made up off
metals?

— Because photonic crystals control and guide light with lower loss then other
technologies that are made up off metals.



From where does the periodicity come from ?

- From the construction of a media with periodic dielectric functions of the order of
the wavelength of light being localized
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2. Examples of photonic crystals in nature

Biologically, it is believed that species have evolved

color through photonic crystals as a means of
thermal regulation and signaling

Wing scale microstructures and nanostructures in butterflies

- natural photonic crystals
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Summary

The aim of our study was to investigate the correlation between
structural colour and scale morphology in butterflies, Detailed
correlations between blue colour and structure were investigated
in three lycaenid subfamilies, which represent a monophylum
in the butterfly family Lycaenidae (Lepidoptera): the Coppers
(Lycaeninae), the Hairstreaks (Theclinae) and the Blues
(Polvommatinae). Complex investigations such as spectral
measurements and characterization by means of light micro-
scopy, scanning electron microscopy and transmission electron
microscopy enabled us to demonstrate that: (i) a wide array of
nanostructures generate blue colours: (i) monophyletic groups

have Uranig-type wing scales that show open microcells formed
by longitudinal ridges. cross-ribs and basal membrane, or
microcells filled with nanostructured layers, the so-called
pepper-pot structure.

Since 1995 (Joannopoulos et al, 1995), researchers have
intensively studied photonic crystals — dielectric materials that
change the propagation of light. Photonic crystals are compaosites
exhibiting a periodic distribution of refractive indexes. In
photonic crystals, well-defined frequency ranges exist in which
light cannot propagate through the structure. These frequency
ranges are also called photonic band gaps. Light of frequencies
within the forbidden gap of anideal photonic crystal is completely
reflected by the structure. Potential applications in optical

Comb-jellyfish

Morpho butterfly



Il- Electromagnetism in dielectric media



1. Maxwell equations in dielectric media

Maxwell equations for a linear and lossless materials composed of regions of homogeneous dielectric media are
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Maxwell equations are linear so we can separate the time dependence from the spatial dependence by expanding the
fields into a set of harmonic modes

H(r,t) = H(r)e it

E(r,t) = E(r)etwt



Maxwell equations describing the mode profiles for a given frequency in a linear and lossless material

Divergence equation
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Master equation



2. Electromagnetism as an eigenvalue problem

The master equation can be seen as an eigenvalue problem

O H(r) = (ﬁ)ZH(r) ,

C

where 0 =V X (?11«) V X H(r)> is a Hermitian operator.

The inner product is defined as follows

(A,B) = jd3rA*(r).B(r)



3. The energy functional

The energy functional is the total energy of the system as a functional of its states

2
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Expressed in term of the electric field gives, it reads

[d3r | VX E(r)|?
[d3r e(r)[E(r)|?
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The lowest frequency mode is localized in the medium with the highest dielectric constant.

U(H) =




lllI- Light guidance in dielectric media



1. Continuous translational symmetry

For a translation d we can define a translation operator T;. If the system is translationally invariant, then

# g(r)

r r+d

Tge(r) =e(r—d) = &(r)

[Td!G)] =0




® Translational symmetry in the three directions

g(7) is a constant
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® Translational symmetry in an infinite plane
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2. Index guiding

@ Snell's law

n, < nyg

Reflection-refraction in a plan of glass

Snell's law of refraction: n4sin(6;) =n, sin(6,)

The critical angle for which a total internal reflection happens is given by setting 6, = %

6, =sin~! <—2> 3 only forn, <ny

n; =



® Symmetries and conservations law for the plan of glass

Far away from the glass

— —

w=clk|=c|k?+k>

Near the surface

iyl = [k[sin(61) = [k|
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Inside the glass plane

wz g

w < clkyl — The only solutions in air are those with imaginary k;, = + 1\/ — +k

corresponding to evanescent waves.
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3. Discontinuous translational symmetry
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Discontinuous translational symmetry along one direction

e()=¢e(7 F a).
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a=axis the primitive lattice vector
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Tﬁ eikxx — eikx (x—-la) — (e—ikxla)eikxx
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Periodic function in x
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Bloch’'s theorem



4. Photonic gaps

® Same dielectric constants

First Brouillon zone

N Brouillon zone
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»  The periodicity allows the description of the modes with the wave vector k




® Different dielectric constants
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We obtain two different frequencies when the electric field is concentrated in two media with different dielectric functions.

[d3r | VX E(r)|?

U(H) = [ d3r e(X)[E (1)
1, \\//\\//\\//\\// no \}n/Z/\V/A\J/—\\/

At the edge of the Brouillon zone, 4 = 2a there are two ways to locate the modes that give two different frequencies



5. Defects

Defects break the transitional symmetry.

They can create localized modes.

nq >n2
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Analogy: doping in semi-conductors

@ Conduction band
OO0~ Dororleve
@.@.@ Valance band




Defects permit localized modes to exist, with frequencies inside photonic band gaps.

Density of States
Photonic Band Gap
Photonic Band Gap
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Defect State Evanescent States

Density of state (the number of allowed modes per unit frequency) of a one-dimension periodic photonic crystal



IV- Applications



1.Photonic crystal fibers

Higher index then
the cladding

26Ky < %858’ (8En

(a) Holey fiber, confining light in a solid core by index guiding

(b) Holey fiber, confining light in hallow core by a band gap.



2. Creation of coherent long-range interactions

Quantum many-body models with cold atoms coupled to photonic crystals
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Using cold atoms to simulate strongly interacting quanlum systems represents an exeiling {ron-
tier of plysics. However, as aloms are nominally neutral poinl particles, this limits the types of
interactions that can be produced. We propose to use the powerlul new platform of cold atoms
trapped near nanophotonic systems to extend these lmits, enabling a novel quantum material in
which atomie spin degrees of freedom, motion, and photons strongly couple over long distances.
In this system, an atom irapped near a photonie erystal seeds a localized, tunable cavily mode
arcund the atomie position. We find that this eflective cavily facilitates Interactions with other
atoms within the cavity length, 1n o way that can be made robust against realistic Imperfections.
Finally, we show that such phenomena should be accessible using one-dimensional photonie erystal
wavegnides in which eoupling to atoms has already been experimentally demonstrated.

Trapped ultracold atoms are a rich resouree for physi-
cists. Izolated from the environment and routinely ma-
nipulated, they can act as a quantum simulator for a
wide variety of physical models!. However, while short-
range interactions between atoms can be adjusted by Fes-
hbach resonance, these systems typically lack the long-
range interactions required to produce some of the most
interesting condensed matter phenomena. For example,
exotic phases such as supersolids are predicted in sys-
tems with long-range interactions®, as well as Wigner
erystallization® and topological states®. Long-range in-

that controls the propagation of light**. By introduc-
ing a defect into this regular structure cavity modes for
the light may be induced. In this work, we demonstrate
that a single atom trapped near an otherwise perfect pho-
tonic crystal can also seed a localised cavity mode around
the atom. The physics of the atom coupled with the pho-
tonic erystal can then be understood by a direct mapping
to cavity quantum-electrodynamics (QED) allowing intu-
ition and results to be carried from this well-developed
field. When many atoms are trapped, these dynamically

induced cavitles mediate coherent interactions between
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Defects in a 1D photonic crystal created by the presence of two level
atoms. The atoms induce localized cavities. The atoms separated by
the order of the effective cavity length can interact coherently with
each other.

(a) Band structure of a 1D photonic crystal. (b) Two level atom
coupled to the 1D photonic crystal having resonance frequency w,
close to the band edge frequency w,, with A = w, — wy,.



V- Summary



@ Photonic crystals are composed of periodic dielectric media that affect electromagnetic wave propagation in
the same way that the periodic potential in a semiconductor crystal affects the propagation of electron.

e Lightwaves may propagate through the media or propagation may be disallowed, depending on their
wavelength.

@ Light can be confined either by index guiding or by introducing defects, because they allow the existence of
frequencies inside the band gap.
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