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Superconductors
● Superconductor: a material with 0 electrical resistance.

● Application in many fields that require powerful magnets:

○ MRI/NMR machines.

○ Mass spectrometers.

○ Particle accelerators.

○ Plasma confinement.

● Conventional superconductivity is explained by Bardeen–Cooper–Schrieffer theory:

○ The electron-lattice interactions produce Cooper pairs.

○ Then the Cooper pairs can form a Bose–Einstein condensate.

● Usually conventional superconductivity can be achieved only at low temperatures (few K).

● Conventional superconductor requires complex cryogenic apparatus.
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High-temperature Superconductors
● Materials that behave as superconductors at temperatures above the boiling point of liquid nitrogen (77 K).

● Usually they are compounds of several elements:

○ Copper oxides (cuprates) like the Yttrium barium copper oxide.

○ Iron-pnictogen-based like the Potassium fluoride doped LaOFeAs.

● They do not conform to the conventional BCS theory

(unconventional superconductors).

● Theoretically studying these superconductors is challenging.
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Superconductivity in bilayer graphene
● In 2018 was observed superconductivity in bilayer graphene with one layer twisted at an angle of ≈1.1°:

twisted bilayer graphene (TBG)

● The critical temperature achieved is 1.7 K (lower than unconventional superconductors).

● However TBG has several features similar to that of cuprates:

○ Strong electron-electron coupling.

○ Structures in phase diagram, with Mott-like insulator behaviour.

● These features suggest that the TBG is an unconventional superconductors.

● TBG is relatively simple and the charge carrier density is tunable in situ.

○ Ideal testbed for unconventional superconductivity.

● I’ll show some resistance measurement of TBG and sample inspection with scanning tunneling microscopy.
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Twisted bilayer graphene
● Two aligned graphene sheets stack in a AB modular pattern.

● When twisted the pattern regularity is broken.
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Twisted bilayer graphene
● Two aligned graphene sheets stack in a AB modular pattern.

● When twisted the pattern regularity is broken.

● The two-layer stack forms a more complex repeating structure (superlattice).

● The unit cell size increases when the rotation angle decreases.
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Twisted bilayer graphene
● The superlattice potential folds the band structure, modifying the Fermi velocity.

● At 1.1°, the first ‘magic angle’,  the Fermi velocity drops to zero.

● The energy bands near charge neutrality become flat

→ ‘magic angle’ TBG acts as an Mott-like insulator Half-filling of these bands.

● The phase diagram of ‘magic angle’ TBG consists of correlated insulator phases 

and superconducting phases, which can be realized via continuous tuning of 

temperature, magnetic field and carrier density.
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Band energy E of TBG at θ = 1.05°.
https://doi.org/10.1038/nature26160
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TBG device
● TBG device is etched into a ‘Hall’ bar.

● Resistance R
xx

 is measured as V
xx

 / I .

● Carrier density n is tuned by regulating the voltage to the back gate V
g
 (no need of chemical doping).

○ This allows to fine study conductance and resistance as a function of n.
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Resistance vs temperature
● Superconducting domes on each side of the half-filling correlated insulating state.

● This is a behaviour similar to cuprate one.

9Resistance as a function of carrier density and temperature. https://doi.org/10.1038/nature26160
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Conductance vs carrier density
● V shape at charge neutrality point.

● Insulator at ±3.2 × 1012 cm−2 (n
s
) due to single-particle bandgaps.

● Minima at ±2 and ±3 electrons per unit cell due to competition between the Coulomb energy and the reduced 

kinetic energy.

● Perpendicular magnetic field suppresses superconductivity.

10Conductance as a function of carrier density. T = 70 mK; V
bias

 = 10 μV. https://doi.org/10.1038/nature26160
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Resistance vs magnetic field
● Superconducting domes on each side of the half-filling correlated insulating state with a perpendicular 

magnetic field.

● The critical temperature dependence from magnetic field is well described by conventional theory but not for 

in-plane magnetic field.

11Resistance as a function of carrier density and perpendicular magnetic field. T = 70 mK. https://doi.org/10.1038/nature26160
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Comparison to other superconductor
● The extremely small carrier density of ‘Magic angle’ TBG suggests strong interaction between electron.

● Also the ratio T
c 
/ T

F
 is similar and sometimes higher than other unconventional superconductors.

● That classify the ‘Magic angle’ TBG as unconventional superconductor.

12https://doi.org/10.1038/nature26160
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Twist angle
● The twist angle has a great impact on the behaviour of TBG.

● We need a way to measure the twist angle in TBG.

13https://doi.org/10.1038/nature26160

https://doi.org/10.1038/nature26160


Scanning tunneling microscopy (STM)
● STM is a powerful means to study the surface atomic structure and electronic structure.

● Based on quantum tunneling.

● When a conducting tip is brought very near to the surface, a bias applied between the two allows electrons to 

tunnel through the vacuum between them.

● The tunneling current is a function of bias (V), tip-sample distance (S) and the local density of states (Ф) of the 

sample and tip.

● 0.02 nm lateral resolution.

● 0.01 nm depth resolution.

● Can produce a 3D profile of a surface.

● The tip can manipulate the surface.
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Scanning tunneling microscopy (STM)
The main components of STM are

● The scanning tip.

● Coarse sample-to-tip control to move the tip close to the sample.

● The vibration isolation system to produce clean measure and avoid crash (tip-sample separation 0.4-0.7 nm).

● 3D piezoelectric scanner to move precisely the tip.

● Control electronics.

STM can work at constant-height mode and constant-current mode 15



STM of bilayer graphene
● As anticipated both aligned and twisted bilayer graphene presents modular pattern.

● STM image of AB-stacking bilayer graphene shows hexagonal close-packed structure.

● Twisted stacking shows moiré patterns.

●  Moiré pattern period (D) and the twisted angle (θ) are binded by the equation (d = 0.246 nm lattice constant of graphene)
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STM of bilayer graphene
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● So STM allows to characterize bilayer 

graphene quite easily.

● Twist angles can span from 1° to 12° on 

bilayer graphene on rhodium (Rh) foil (b-f).

● On this substrate there is no prefered

twist angle. 

● Figure g shows the pattern periodicy.

● The atomic structure is visible only if

D < 3 nm.

DOI: 10.1007/978-981-10-5181-4_3



Bilayer graphene domains inspection
● The graphene synthesized on the Rh substrate follows the mechanism of segregation growth.

● Obtain large-scale singlecrystalline graphene domains is difficult.

● STM can inspect graphene searching for domains boundary.
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Bilayer graphene domains inspection
● The graphene synthesized on the Rh substrate follows the mechanism of segregation growth.

● Obtain large-scale singlecrystalline graphene domains is difficult.

● STM can inspect graphene searching for domains boundary.

19Coexistence of monolayer and bilayer graphene on Rh substrates. 
DOI:10.1007/978-981-10-5181-4_3



Bilayer graphene domains inspection
● The graphene synthesized on the Rh substrate follows the mechanism of segregation growth.

● Obtain large-scale singlecrystalline graphene domains is difficult.

● STM can inspect graphene searching for domains boundary.

20Different angle linking of twisted bilayer graphene on Rh substrates. 
DOI:10.1007/978-981-10-5181-4_3



● Theoretically studying unconventional superconductors is challenging.

● Twisted bilayer graphene is a simple tunable material that represents a good testbed for superconductivity.

● It share some features with unconventional superconductors opening the possibility to study unconventional 

superconductors theoretically.

● Scanning tunneling microscopy allows to measure accurately the twist angle between the two layers.

● Scanning tunneling microscopy can also highlight disuniformity on TBG introduced by the synthesis process.

Summary
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Temperature–density phase diagrams

23Temperature–density phase diagrams of ‘magic angle’ TBG at different magnetic fields. https://doi.org/10.1038/nature26160
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