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Brief introduction to interaction-free measurements

There are many examples of measurements that exploit the non-locality of
quantum mechanics:

if object with charge or electric/magnetic moment → Aharonov�Bohm e�ect

measurement on entangled states → spatial case: EPR state

The latter is an example of what we call an interaction-free measurement:

a measurement of position performed on one of the two particles gives
information on the position of the second without interacting with the
second one

However, in the case of entanglement, we had information on the object prior
to the measurement: can we do without?

Answer: yes! → "Quantum mechanical interaction-free measurements", A.
Elitzur, L. Vaidman (1993)
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The Elitzur-Vaidman thought experiment

We employ a Mach-Zehnder
interferometer with a single-particle
state (i.e. single photon)

A measurement can have 3 outcomes:

• no detector clicks
• D1 clicks
• D2 clicks

Let |1〉 be the state of a photon moving
to the right, |2〉 the one moving upwards
and |scattered〉 the one of a photon
absorbed or scattered by the object.

The action of the beamsplitters is:

|1〉 → 1√
2
[|1〉+ i |2〉]

|2〉 → 1√
2
[|2〉+ i |1〉]

and the one of the mirrors is:

|1〉 → i |2〉
|2〉 → i |1〉
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The Elitzur-Vaidman thought experiment

When there is no object, we have:

|1〉 → 1√
2
[|1〉+ i |2〉]→ 1√

2
[i |2〉 − |1〉]→ 1

2
[i |2〉 − |1〉]− 1

2
[|1〉+ i |2〉] = − |1〉

→ with no object, D2 never clicks!

With an object:

|1〉 → 1√
2
[|1〉+ i |2〉]→ 1√

2
[i |2〉+ i |scattered〉]→ 1

2
[i |2〉 − |1〉] + i√

2
|scattered〉

Once the state is measured at the detectors, the probabilities of detection are:

1

2
[i |2〉 − |1〉] + i√

2
|scattered〉 →


|2〉 → D2 clicks, probability 1/4

|1〉 → D1 clicks, probability 1/4

|scattered〉 → no clicks, probability 1/2

More generally, with unbalanced beamsplitters of re�ectivity a and b, a2 + b2 = 1:

ia[b |2〉+ ia |1〉] + ib |scattered〉 →


|2〉 → D2 clicks, probability a2b2

|1〉 → D1 clicks, probability a4

|scattered〉 → no clicks, probability b2
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Can we do better than P2/Pscattered = a2 → 1 for a → 1?

Yes! → "Protocol for Direct Counterfactual Quantum
Communication", H. Salih, Z. Li, M. Al-Amri, and M. S.
Zubairy (2013)

The trick is exploiting a chained version of the quantum
Zeno e�ect

Let us suppose to use a large number N >> 1 of
beamsplitters with very small transmittivity, cos(θ) =

√
R

with R being the re�ectivity and θ = π/2N.

The action of the beamsplitters is:

|10〉 → cos(θ) |10〉+ sin(θ) |01〉

|01〉 → cos(θ) |01〉 − sin(θ) |10〉
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Can we do better than P2/Pscattered = a2 → 1 for a → 1?

If the switches are unblocked, the state evolves coherently.
After n cycles, the action on the initial state |10〉 is then:

|10〉 → cos(nθ) |10〉+ sin(nθ) |01〉

→ after N cycles, the state is |01〉 → D2 clicks

If instead the switches are activated, they continuously
measure the state (each time with extremely low probability
sin2(θ)). Then, after n cycles:

|10〉 → cosn−1(θ)[cos(θ) |10〉+ sin(θ) |01〉]

cosN(θ) ≈ 1→ after N cycles, the state is ≈ |01〉

→ D1 clicks

This scheme then allows to measure the state of the switch
with arbitrary e�ciency.
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Applications: direct counterfactual communication

A modi�ed version of the previous setup can be used to
perform fully counterfactual communication (i.e., to make
it so that Alice can know the state of the switch set by Bob
without having any photon passing through Bob's branch of
the setup (which still happened for open switch).

The scheme exploits a nested version of the previous one,
with M "big cycles" of the N cycles from before. As
previously, θN = π/2N and θM = π/2M, N,M >> 1. If the
switches are o�, for every m-th cycle:

|010〉 → cos(nθN) |010〉+ sin(nθN) |001〉
n=N−−→ |001〉

The detectors D3 perform a measurement in the same way
as a closed switch does, so for open switch after the m-th
cycle the initial state |100〉 goes to:

|100〉 → cosm−1(θM)[cos(θM) |100〉+ sin(θM) |010〉]
m=M−−−→ |100〉

→ at the end, D1 clicks. No photons have passed through
Bob's branch (D3 didn't click!)
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Applications: direct counterfactual communication

If instead Bob activates the switches, for each m-th cycle:

|010〉 → cosn−1(θN)[cos(θn) |010〉+ sin(θN) |001〉
n=N−−→ |010〉

After the m-th cycle, the state is:

|100〉 → cos(mθM) |100〉+ sin(mθM) |010〉 m=M−−−→ |010〉

→ at the end, D2 clicks.

Again, no photons have passed through Bob's branch (they
would have been blocked by the switches)
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Michelson version of Salih et al's protocol
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E�ciency and imperfections in Salih et al.'s protocol

Detection probability estimated via a recursive calculation using setup parameters

E�ciency impacted by two classes of phenomena:

Ones that don't cause errors but only missed detections, i.e. e�ciency η < 1 of the
detectors → reduced e�ciency of communication

Ones that cause measurement errors:

For alternative Michelson-type interferometer setup, mainly due to imperfect
polarization rotators ∆θN(M) = sN(M)[θN(M)/N(M)]

Loss of photons in the transmission channel when Bob is not blocking

e�ciency and error rate (measured as mutual information) quanti�ed in simulations
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