Optical quantum sensors for brain monitoring and imaging

Raffaele Di Vora

01.06.2022

Brain monitoring: until recently, dominated by static neuroimaging

3 main traditional techniques:

- electroencephalography (EEG): time resolution \sim ms; spatial res. \sim cm
- magnetoencephalography (MEG): time resolution \sim ms; spatial res. \sim mm

 \bullet functional magnetic resonance imaging (fMRI): time resolution up to \sim 0.1 ms; spatial res. \sim mm

 \rightarrow better SNR due to blood oxygen level-dependent contrast technique, recently also from introduction of spin-relaxation free optical magnetometers

Limitation: large, expensive, patient has to stay still inside the scanner!!

Not wearable ightarrow spatial resolution limited by distance between sensor and brain

Optical techniques: promise to be more flexible

Optical techniques: general characteristics

Sensing principle: functional changes in tissue lead to changes in static neuroimaging

Main advantages over traditional techniques:

- smaller, typically more cost-effective
- \bullet wearable \rightarrow adaptable to different environments \rightarrow better suited to clinical applications
- Can exploit different wavelenghts to monitor various parameters in parallel

Disadvantage: strong scattering and absorption in human skull and scalp

- ightarrow typical transmission for 7-11mm-thick skull: $\sim 2\%$ @1064nm
- \rightarrow Some techniques only usable on soft tissues, brains of infants/small animal models
- \rightarrow difficult to use for morphological scanning

4 main techniques for label-free, non-invasive optical brain monitoring:

• functional near-infrared spectroscopy (fNIRS): monitor cortical neural activity measuring dynamics of hemoglobin, but limited spatial resolution

• diffuse correlations spectroscopy (DCS): measure blood flow thanks to scattering of photons by blood cells, but limited spatial resolution

• photoacoustic imaging (PAI): high contrast and spatial resolution, limited by thick skill effect (ultrasound absorption \sim 20 dB/cm)

• optical coherence tomography (OCT): extremely accurate spatial information, good temporal resolution, extremely limited penetration depth

Consequence: only first two techniques usable for human brain monitoring!

Optical techniques: overview /2

Technology	Measurement Principle	Measuring Parameters	Wavelength (nm)	Source	Common Detector	penetration Depth	Spatial Resolution	Used as Wearable	Speed	Label Free	Cost
fNIRS	Scattering + absorption	CMRO ₂ , HbT	660–950	LED, LD, Laser	PD	A few cm	~1 cm/Fast	Yes	High	Yes	Low
DCS	Speckle fluctuation	BFI, CMRO ₂	660–950	Laser (coherent)	APD	up to ~1.5 cm	~1 cm/ fast	Yes	High	Yes	Low
PAI	PA effect	CMRO ₂ , optical absorbers	500-1300	LD, Laser	PZT or array	up to 7 cm in soft tissues	Up to 1 µm	Yes	Depend on image size, Slow	Yes	High
OCT	Light coherence properties	CBF, CMRO ₂	Visible +IR	Wide band source	PD	up to 2 mm	Up to 1 µm	No	Depend on image size, high	Yes	Low

 $CMRO_2$ = cerebral metabolic rate of oxygen; HbT = concentration of hemoglobin; LD = laser diode; BFI = blood flow index; CBF = cerebral blood flow; PD = photodiode; APD = avalanche photodiode; PZT = piezoelectric transducer

functional Near-InfraRed Spectroscopy (fNIRS)

Sensing principle: wavelength-dependent absorption and scattering due to different energy level structure of functional molecules (e.g. hemoglobin)

Typically uses 2-3 wavelenghts in physiological window 650-950 nm \to skin, tissues, bones \sim transparent

functional Near-Infrared Spectroscopy (fNIRS)

• Clinical applications:

preoperative localization of tumors/cancer therapy or neurodegenerative disease monitoring

mapping of functional areas before surgery

• Uses high-sensitivity photodiodes/photomultipliers to detect back-scattered light along "elliptical pathways"

 \rightarrow need for high-powered sources (LED, LD) near the brain

$$\mu(z) = \sum_{i=1}^{N} \mu_i(z) = \sum_{i=1}^{N} \sigma_i n_i(z)$$

 $\mu(z)$ attenuation coefficient at point z, σ_i attenuation cross-section of species i, $n_i(z)$ number density of species i

$$T = e^{\int_0^d \mu(z) \, dz} = 10^{-A}$$

 ${\cal T}$ transmittance coefficient, ${\cal A}$ absorbance coefficient, ${\it I}$ optical path length

$$OD = log_{10}(rac{l_0}{l_{in}}) = \mu_a \cdot [X] \cdot I \cdot DPF + G$$

OD optical density, I_0 measured light intensity, I_{in} incident light intensity, [X] cromatophore concentration, DPF differential path length factor (determined through measurement of the mean time of flight of picosecond pulse or by frequency-domain NIRS at 4 different wavelengths), G geometrical parameter for the light's scattering properties (treated as constant)

By measuring the differentials in time, we obtain information on the changes in cromatophore concentrations:

$$\Delta[X] = \frac{\Delta OD}{\mu d}$$

(*d* total corrected photon path length)

 \rightarrow measuring at at least two wavelengths λ_1 and λ_2 (one below and one above the crossing point):

$$\begin{pmatrix} \Delta OD_{\lambda_1} \\ \Delta OD_{\lambda_2} \end{pmatrix} = \begin{bmatrix} \mu_{\lambda_1}^{Hb} d & \mu_{\lambda_1}^{HbO_2} d \\ \mu_{\lambda_2}^{Hb} d & \mu_{\lambda_2}^{HbO_2} d \end{bmatrix} \begin{pmatrix} \Delta[X]^{Hb} \\ \Delta[X]^{HbO_2} \end{pmatrix}$$

fNIRS - techniques /1

3 different fNIRS techniques:

- Continuous Wave technique
- Frequency-Domain technique
- Time-Domain technique

Absolute concentrations obtainable from total photon path length

• Continuous Wave technique

low cost, miniaturized and wearable

doesn't measure time-of-flight, so only monitors relative changes in the ratio $\rm HbO_2/\rm Hb$

can't distinguish between absorption and scattering changes

amplitude of different wavelengths modulated at kHz/10s of kHz frequency (i.e. using acousto-optic modulators) to distinguish them

better SNR due to use of lock-in amplification

Lock-in amplification: If we multiply a periodic signal by a cosine/sine reference signal, the average amplitude is: $U_{out} = \frac{1}{2} V_{sign} \cdot cos\theta$

 V_{sign} measured signal, heta dephasing btw reference and signal

using two detectors:
$$\begin{cases} X = \frac{1}{2} V_{sign} \cdot cos\theta \\ Y = \frac{1}{2} V_{sign} \cdot sin\theta \end{cases} \rightarrow \begin{cases} U_{out} = \sqrt{X^2 + Y^2} \\ \theta = arctan \frac{Y}{X} \end{cases}$$

 $\rightarrow \iota$

fNIRS - techniques /3

Improvement due to lock-in amplification: because noise is wide-bandwidth $P_{noise} = k_B \cdot T_{eff} \cdot \Delta \nu$, T_{eff} effective temperature of detection chain, $\Delta \nu$ measuring bandwidth

ightarrow measuring over small arDelta
u, we improve SNR... but we also limit time resolution $\sim 1/arDelta
u$

• Frequency-Domain technique

intensity modulated CW laser, but at 10s/100s of MHz

allows to measure attenuation, phase shift and average path length

 \rightarrow allows to measure absolute values for Hb/HbO_2 due to estimation of reduced scattering coefficients

• Time-Domain technique

uses very short (\sim ps) near infrared laser pulses

allows to obtain path length from time-of-flight \to direct measure of scattering and attenuation \to allows to measure absolute values for Hb/HbO₂

more costly and bigger, but becoming smaller, more affordable and robust

needs photon counters

Raffaele Di Vora

Diffuse Correlations Spectroscopy (DCS)

Sensing principle: measure the Blood Flow Index (BFI) from optical properties of tissue (scattering from moving "speckles" i.e. blood cells)

Uses correlation diffusion equation (obtained from radiation transport equation + some approx.)

ightarrow allows to obtain hemodynamics from measurement of temporal autocorrelation function of the electric field G1(au)

 $G_1(\tau)$ related to fraction of moving scatterers over all scatterers α , to effective photon diffusion coefficient D_{γ} , to absorption and reduced scattering coefficients μ_a and μ_s'

 \rightarrow limited by estimation of μ_s ', less sensitive to μ_a

Source: high coherence laser

Detectors: single-photon counting avalanche photodiodes + photon correlator

Clinical applications: high potential in cancer therapy monitoring (hemodynamics before/after)

Diffuse Correlations Spectroscopy (DCS)

• Electric field and intensity autocorrelation functions:

$$A(\tau) = \int_{-\infty}^{\infty} E(t) E^*(t-\tau) dt$$
$$I(\tau) = \int_{-\infty}^{\infty} I(t) I(t-\tau) dt$$

 \rightarrow measure of normalized intensity autocorrelation

$$g_2(\tau) = \frac{\langle I(t)I(t-\tau)\rangle}{\langle I\rangle^2}$$

 \rightarrow then we obtain $g_1(\tau)$ from the Siegert relation:

$$G_2(\tau) = \langle I \rangle^2 + \beta |G_1(\tau)|^2$$

$$ightarrow g_1(au) = \sqrt{g_2(au) - 1/eta}$$

 β constant dependent on number of speckles detected, coherence length and stability of the laser

• Correlation diffusion equation:

 $\left[D_{\gamma}\nabla^2 - \nu\mu_a - \frac{1}{3}\nu\mu'_s k_0^2 \langle \Delta r^2(\tau) \rangle\right] G_1(r,\tau) = -\nu S(r)$

 $\mu'_s = \mu_s(1 - \langle \cos\theta \rangle) = 1/I^*$ reduced scattering coefficient (I^* reduced scattering length), $\mu_a = 1/I_a$ absorption coefficient (I_a absorption length), $D_\gamma = v/3\mu'_s$ photon diffusion coefficient, v speed of light in the medium, k_0 wave vector of light, r spatial position, S(r) light source distribution

 $\langle \Delta r^2(au)
angle = \langle \Delta V^2
angle au^2$ for random flow with mean square velocity $\langle \Delta V^2
angle$

We can calculate the approximate impulse response: for semi-infinite boundary conditions, the Green function is

 $G_{1}(r,\tau) = \frac{3\mu'_{s}}{4\pi} \left[\frac{e^{-\kappa(\tau)r_{1}}}{r_{1}} - \left[\frac{e^{-\kappa(\tau)r_{b}}}{r_{b}} \right] \right]$ $r_{1} = \sqrt{1/\mu'_{s}^{2} + r^{2}}; r_{b} = \sqrt{(2z_{b} + 1/\mu'_{s})^{2} + 1/\mu'_{s}^{2} + r^{2}}; K(\tau) = \sqrt{3\mu_{a}\mu'_{s} + 6\mu_{s}^{2} k_{0}^{2} \alpha \tau BFI}$

Solve by fitting experimental points for μ_s' , μ_a and BFI

 \rightarrow Additional constraint helpful! measure of $\mu_{\it eff}=\sqrt{3\mu_a\mu_s'}$ by pulsed fNIRS

DCS: iterative fitting

fNIRS: finger tapping demonstration

One sensor positioned on contralateral sensorimotor cortex, one on area unrelated to movement planning and execution; subject told to finger tap between vertical bars in graphs

DCS: models and measures of $g_1(\tau)$

Measure of blood flow in rat when flow ensured by heart/by heart pump; same measure for rat alive/dead

Basic experimental schemes of PAI and OCT

Bibliography

• "Optics Based Label-Free Techniques and Applications In Brain Monitoring" - Priya Karthikeyan, Sadegh Moradi, Hany Ferdinando, Zuomin Zhao and Teemu Myllylä; https://doi.org/10.3390/app10062196 (2020)

• "Differential Path-Length Factor's Effect on the Characterization of Brain's Hemodynamic Response Function: A Functional Near-Infrared Study" - Muhammad A. Kamran, Malik M. N. Mannann and Myung Yung Jeong; https://doi.org/10.3389/fninf.2018.00037 (2018)

• "Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects" - Erin M. Buckley, Ashwin B. Parthasarathy, P. Ellen Grant, Arjun G. Yodh, Maria Angela Franceschini; DOI: 10.1117/1.NPh.1.1.011009 (2014)

• "Diffuse Optics for Tissue Monitoring and Tomography" - T. Durduran, R. Choe, W. B. Baker, A. G. Yodh; DOI: 10.1088/0034-4885/73/7/076701 (2010)

• "Chapter 4 Correlation Diffusion 4.1 Introduction" - Harvard lecture notes; https://www.nmr.mgh.harvard.edu/PMI/PDF/boas-diss/ch4.pdf

Thank you for your attention!!