

Istituto Nazionale di Fisica Nucleare

Statistical methods in the search for cosmological axions

Statistical Data Analysis

Raffaele Di Vora 13/04/2022

(Extra-brief) Introduction to axion searches

What is an axion

- Introduced to fix the strong CP problem of QCD
- Added term to SM Lagrangian:

$$\mathcal{L}_{a\gamma\gamma} = \frac{1}{4} g_{a\gamma\gamma} a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

Why search for axions

- Axion: Cold Dark Matter candidate!!

How to search for CDM axion

 We exploit the interaction with virtual photons: inverse Primakoff effect

$$g_{a\gamma\gamma} = \alpha g_{\gamma} / \pi f_a$$

- CDM
$$\rightarrow \beta \approx 10^{-3} \rightarrow Q_{a} \approx 10^{6}$$

(Extra-brief) Introduction to axion searches

The Sikivie Haloscope scheme

- We provide virtual photons to scatter on with a high magnetic field
- Signal is boosted integrating inside high-Q factor microwave cavity
- From there, collected with standard MW electronics

$$P_{\rm sig} = \left(g_{\gamma}^2 \frac{\alpha^2}{\pi^2} \frac{\hbar^3 c^3 \rho_a}{\chi}\right) \left(\frac{\beta}{1+\beta} \omega_c \frac{1}{\mu_0} B_0^2 V C_{mn\ell} Q_L \frac{1}{1+\left(2\delta\nu_a/\Delta\nu_c\right)^2}\right)$$

$$P_{\text{axion}} = 2.2 \times 10^{-23} \text{W} \left(\frac{\beta}{1+\beta}\right) \left(\frac{V}{136 \ \ell}\right) \left(\frac{B}{7.6 \text{ T}}\right)^2 \left(\frac{C_{010}}{0.4}\right) \left(\frac{g_{\gamma}}{0.36}\right)^2 \\ \left(\frac{\rho}{0.45 \text{ GeV cm}^{-3}}\right) \left(\frac{Q_{\text{axion}}}{10^6}\right) \left(\frac{f}{740 \text{ MHz}}\right) \left(\frac{Q_{\text{L}}}{30,000}\right) \left(\frac{1}{1+(2\delta f_a/\Delta f)^2}\right)$$

ADMX Run 1B: Experimental Setup

Receiver Chain

- Switch → two modes of operation:
 - cavity readout
 - Noise characterization
- Amplifiers:
 - JPA (Josephson Parametric Amplifier)
 - HFET (Heterostructure Field-Effect Transistor)
- Mixer and bandpass filters at room temperature

3

ADMX Run 1B: Hardware signal treatment

Signal digitization

- Signal bandwidth after last filter 150 kHz
- ADC sampling rate 25 MS/s
- Single sample total sampling time 10 ms

→ by Nyquist-Shannon Theorem we can reconstruct the signal

FFT (Fast Fourier Transform)

- 48.8 kHz-wide window
- 512 x 95 Hz-wide bins
- Total integration time: 100 s \rightarrow 10⁴ samples/bin

Analysis strategy

Signal low → search for power fluctuations above average noise background

We need:

- Threshold for axion detection
 - \rightarrow Needs to be high to limit number of candidates!
- A way to identify false signals
- A procedure to estimate the noise background

Run cadence

Process	Frequency	Fraction of Time per Iteration	
Transmission Measurement	Every Iteration	< 1%	
Reflection Measurement	Every Iteration	< 1%	
JPA Rebias	Every 5-7 Iterations	25%	
Check for SAG Injection	Every Iteration	< 1%	
Digitize	Every Iteration	98% ^a	
Move Rods	Every Iteration	< 1%	

Data-taking decision tree

System noise characterization

We define the overall noise temperature of the system T_{sys} :

$$T_{\rm sys} = T_{\rm cav} + T_{\rm amp} \rightarrow P_n = k_{\rm B} T_{\rm sys} b$$

with **P** the noise power in the measured bandwidth **b**

0.03 K \approx hf/k_B << T_{sys} \rightarrow Quantum fluctuations negligible!

Then, the Signal to Noise Ratio at integration time t is:

$$\mathrm{SNR} = \frac{P_{\mathrm{axion}}}{k_{\mathrm{B}}T_{\mathrm{sys}}} \sqrt{\frac{t}{b}}$$

7

System noise characterization

We use Y-factor measurements:

1) Hot Load method (Feb., Sept.):

 JPA off (saturation, unstable gain with thermal load) → acts as mirror, can be used for wide bandwidth (5MHz) power measurement

$$P = G_{\rm HFET} k_{\rm B} \left[T_{\rm JPA} (1 - \epsilon) + T_{\rm load} \epsilon + T_{\rm HFET} \right]$$

2) Heating Switch (Jul., Sept.):

- Small ΔV applied to switch
- all quantum amplifier package heats

 $P = G_{\text{HFET}} k_{\text{B}} \left[T_{\text{JPA}} (1 - \epsilon) + T_{\text{cav}} \epsilon + T_{\text{HFET}} \right]$ - If $\mathbf{T}_{\text{JPA}} \approx \mathbf{T}_{\text{cav}}$:

$$P = G_{\rm HFET} k_{\rm B} \left[T_{\rm JPA} + T_{\rm HFET} \right]$$

System noise characterization: results

No changes observed \rightarrow assumption: T_{HFET} , G_{HFET} stable

- All 4 measurements put together, Least squares fit on combined results:

```
Receiver noise temperature T_{HFET} = (11.3 \pm 0.1) K
```

(mostly from square root of covariance)

System noise characterization: results

Signal to Noise Ratio Improvement (SNRI):

Changes over course of run since JPA gain is unstable for $\Delta T \approx 300/400$ mK

10

Model parameters and systematics

Other parameters to be fed to proper data analysis:

- ω_0 and \mathbf{Q}_L of cavity \rightarrow from Lorentzian fit to transmission measurement
- β coefficient \rightarrow from fit to reflection meas.

 $\Gamma = \frac{\beta - 1 - (2iQ_0\delta\omega/\omega_0)}{\beta + 1 + (2iQ_0\delta\omega/\omega_0)}$

– Form factor C_{010} (from finite element simulations)

Statistical and systematical errors:

Source	Fractional Uncertainty
$B^2 V C_{010}$	0.05
Q	0.011
Coupling	0.0055
RF model fit	0.029
Temperature Sensors	0.05
SNRI measurement	0.042
Total on power	0.088

Axion search data processing: baseline removal

Raw data contains gain variations superimposed on the signal

mostly from room temperature components

→ we use Savitzky-Golay filter to remove them, but:

- Passband ripple \rightarrow residual unfiltered features
- Imperfect stopband attenuation → signal attenuation, introduces small negative correlations btw processed run bins

Assumption: noise statistically equivalent to thermodynamic noise at T= T_{sys}

 \rightarrow p.d.f. of bin exp. value is Gaussian, fluctuations in subspectrum are $\chi^2(2)$

then, by the Central Limit Theorem:

after averaging over 10⁴ samples, the distribution of the noise power fluctuations will be Gaussian!

Cryogenic baseline removal and spectrum processing

After division with S-G filter:

 Spectrum is convolved with additional 6th order
Padé filter to remove residual frequencydependent variations due to cryogenic receiver tranfer function

Power normalised by dividing every bin for overall mean, then we subtract 1

→ every bin becomes random sample
from Gaussian distribution with mean µ=0

Data quality control and rescan procedure

12,492/197,680 out of raw spectra eliminated due to analysis cuts

- Timestamp cuts due to various aberrant run conditions and engineering studies
- Max. Std. Dev. Increase condition refers to normalized χ^2 of Padé filter fit

Cut Parameter	Scans Removed	Constraint
Timestamp cuts	7,189	N/A
Quality Factor	316	10,000 < <i>Q</i> <120,000
System Noise	4,514	$0.1 < T_{\rm sys} < 2.0$
Max Std. Dev. Increase	224	2.0
Error in filter shape	249	N/A

Rescan thresholds:

- Power excess in bin > 3σ
- Expected SNR for DFSZ axion < 2.4
- Limits set at that frequency do not meet required DFSZ sensitivity (measured power + candidate threshold power > DFSZ axion power
- Candidate power > DFSZ axion power + 0.5σ

Frequency (MHz)	Notes	Power (DFSZ)
780.255	Maximized off-resonance	1.49
730.195	Synthetic blind	1.51
686.310	Maximized off-resonance	2.36

Raffaele Di Vora

Statistical methods in the search for cosmological axions

13/04/2022

14

Combining spectra into a Grand Spectrum

How to merge together data for the same frequency bin but acquired in different conditions?

- Every bin of every spectrum is divided by the relative signal power that would be generated due to the sample parameters and Lorentzian lineshape
- Discrepancies due to differing noise levels are mitigated by scaling the each bin by k_BT_{sys}
- Finally, the power in each bin is convolved with a filter given by the axion lineshape

Bins are combined via weighed mean, where the weights are such that they maximize the SNR . The weights are found by imposing that the Maximum Likelihood estimation of the true mean value μ of the power excesses is the same for all contributing bins

Since it is a weighted mean of indipendent Gaussian random variables with same mean, one finds:

$$P_w = \frac{\sum\limits_{j=0}^{N} \frac{P_{scaled}^j}{\sigma^{j^2}}}{\sum\limits_{i=0}^{N} \frac{1}{\sigma^{j^2}}} \qquad \sigma_w = \sqrt{\frac{1}{\sum\limits_{j=0}^{N} \frac{1}{\sigma^{j^2}}}}$$

Synthetic hardware injections

Software: 1773 evenly-spaced axion-like signals injected into real data

- Signals injected with DFSZ power levels
- Of these, 95 ± 2% detected
- Mean power level differs from one → from ratio with expected value, we obtain estimate for efficiency of data treatment procedure: 0.818 ± 0.008

Hardware: axion-like signals physically injected into the system

 Signals injected with DFSZ power levels to (previously calibrated) weakly coupled cavity port

13/04/2022

All signals detected

Raffaele Di Vora

Statistical methods in the search for cosmological axions

ADMX Run 1B results

Grand Spectrum bins: Gaussian variables of mean μ

- If no axion $\rightarrow \mu=0$
- If axion present $\rightarrow \mu = g_v^2 \cdot SNR$
- A 90% C.L. single-sided exclusion limit is set by computing the value of g_{γ} for which $p(X_i < x_i | g_{\gamma}) < \alpha = 0.1$ (assuming X_i is gaussian random variable of mean μ and standard deviation σ_i)

References

- "Axion Dark Matter eXperiment: Run 1B Analysis Details", C. Bartram et al. (ADMX Collaboration), Phys. Rev. D 103, 032002 (2021)
- "HAYSTAC axion search analysis procedure", B. M. Brubaker, L. Zhong, S. K. Lamoreaux, K. W. Lehnert, and K. A. van Bibber, Phys. Rev. D 96, 123008 (2017)
- "A Unified Approach to the Classical Statistical Analysis of Small Signals", G. J. Feldman and R. D. Cousins, Physical Review D 57, 3873–3889 (1998)
- "First results from the HAYSTAC axion search", Benjamin M. Brubaker, e-Print: 1801.00835 [astro-ph.CO] (Yale U.) (2017)

Thanks for your attention!

18