

The spin variance as a measure of quantum entanglement

Ghofrane Bel-Hadj-Aissa

I- Spin

II- Entanglement

III- Expectation value of the spin

Contents

IV- Entanglement measure

V- Conclusions

I- Spin

Electromagnetic field due to the orbital angular momentum

Walther Gerlach

Otto Stern

1920

Intrinsic	Extrinsic	
Mass	Energy	
Charge	Position	
Spin	Linear momentum	
	Orbital angular momentum	

Electromagnetic field due to An intrinsic angular momentum

Niels Bohr 1913

 $|S, m_{s} >$

Orbital angular momentum *l* is quantized

$$l=n\hbar$$

The projection of the spin on any fixed direction is an integer or half-integer multiple of Planck's constant \hbar . The only possible values are

$$m_s = -s\hbar$$
, (-s+1) \hbar , ..., (s - 1) \hbar , s \hbar

$$|\varphi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\alpha}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

Bloch sphere

It seems very hard to explain what a quantum spin is, so can we say at least what it DOES?

 $S^{2} = \hbar^{2}s(s+1) = S_{x}^{2} + S_{y}^{2} + S_{z}^{2} \qquad \sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Spin $s = 0$	Spin $s = \frac{1}{2}$	
$S^{2} = 0 \longrightarrow S_{n} = 0$ $R(\alpha, n) \Psi\rangle = \Psi\rangle, \forall \ \alpha, n \forall$	$R(\alpha, n) = \cos\left(\frac{\alpha}{2}\right)I - i(\sigma, n)\sin\left(\frac{\alpha}{2}\right)$ $R(\alpha, X) 0\rangle = \cos\left(\frac{\alpha}{2}\right) 0\rangle - i\sin\left(\frac{\alpha}{2}\right) 1\rangle$	Z Y X

II- Entanglement

Entanglement is a phenomenon in which <u>a single wave function</u> describes two separate quantum objects. These quantum objects share the same existence, no matter how far apart they might be.

Entangled states can be composed of more than two qubits.

System of 2 qubits

 $|\varphi>=|00>=|0>\otimes|0>$

 $|\Psi> = \frac{1}{\sqrt{2}} (|00> + |11>)$

Separable state

Entangled state

System of 3 qubits

$$|GHZ\rangle = \frac{1}{\sqrt{2}} (|000\rangle + |111\rangle)$$

Maximally entangled state

$$|W> = \frac{1}{\sqrt{3}} (|001>+|010>+|100>)$$

Entangled state

$$=\frac{1}{\sqrt{3}} (|0\rangle \otimes (|01\rangle + |10\rangle) + |1\rangle \otimes |00\rangle)$$

Expectation value of a discrete random variable in probability is given by

$$\mu = E(X) = \sum_{x} xp(x)$$

This informs on the long-term results that one would obtain.

The Expected value of the number of one in the 4 rolling of the dice is

 $\mu = 0.(0.48) + 1.(0.39) + 2.(0.11) + 3.(0.015) + 4.(0.0007) = 0.66$

Expectation value in quantum mechanics

$$\begin{split} < A >_{\varphi} &= < \varphi \mid A \mid \varphi > \\ & \downarrow \\ < A >_{\varphi} &= \sum_{i} a_{i} \mid < \varphi \mid \Psi_{i} > \mid^{2} \end{split}$$

Expectation value of a ½-spin system along a given direction **n**

$$|+n \rangle \langle +n| + |-n \rangle \langle -n| = 1$$

$$|+n \rangle \langle +n| + |-n \rangle \langle -n| = 1$$

$$= \frac{\hbar}{2} \langle \varphi | S_n | \varphi \rangle = \frac{\hbar}{2} \langle \varphi | \sigma_n | + n \rangle \langle +n| \varphi \rangle + \frac{\hbar}{2} \langle \varphi | \sigma_n | -n \rangle \langle -n| \varphi \rangle$$

$$= \frac{\hbar}{2} \langle \varphi | +n \rangle \langle +n| \varphi \rangle - \frac{\hbar}{2} \langle \varphi | -n \rangle \langle -n| \varphi \rangle$$

$$= \frac{\hbar}{2} | \langle \varphi | +n \rangle |^2 - \frac{\hbar}{2} | \langle \varphi | -n \rangle |^2$$

$$= \frac{\hbar}{2} P(+n) - \frac{\hbar}{2} P(-n)$$

Expectation value in single qubit states

 $\longrightarrow \langle \Psi | \sigma_Z | \Psi \rangle = 1$

Expectation value in single qubit states

 $\longrightarrow \langle \Psi | \sigma_X | \Psi \rangle = 0$

Expectation value of the spin in entangled states

Entangled two qubit states

٠

There exists <u>no direction</u> that cancels out the lack of

information

• Entangled three qubit states

Entanglement measure: is a theoretical measure that allows to quantify the amount of entanglement in a quantum system.

2- Quantum sensing

Constructing the entanglement measure

Axioms

- Vanishing on separable states
- Invariant under local unitary operations
- Monotonicity under local operators and classical communications

Fubini-Study metric

$$ds^{2} = < d\varphi | d\varphi > - < \varphi | d\varphi > < d\varphi | \varphi >$$

One qubit system

 $|\varphi\rangle \longrightarrow R(\alpha, n)|\varphi\rangle$

 $|d\varphi\rangle \longrightarrow dR (R(\alpha, n)|\varphi\rangle)$

$$|0\rangle \longrightarrow g = (1 - \langle 0|(\sigma, n)|0\rangle^2) d\alpha^2 \longrightarrow E = 1 - \max_n \langle 0|(\sigma, n)|0\rangle^2 = 1 - \langle 0|(\sigma_z)|0\rangle^2 = 0$$

$$E = \inf_n (1 - \langle 0|(\sigma, n)|0\rangle^2)$$

M qubit system

$$|\varphi\rangle \qquad \longrightarrow \qquad \qquad \prod_{\mu=1}^{M} R(\alpha, n)_{\mu} |\varphi\rangle = \prod_{\mu=1}^{M} (e^{-i\alpha(\sigma, n)})_{\mu} |\varphi\rangle$$

$$|d\varphi\rangle \qquad \longrightarrow \qquad \sum_{\mu=1}^{M} dR_{\mu} |\varphi\rangle_{R} = \sum_{\mu} (-i \, d\alpha \, (\sigma. n))_{\mu} |\varphi\rangle_{R}$$

$$ds^{2} = \sum_{\mu\nu} g_{\mu\nu} d\alpha^{\mu} d\alpha^{\nu} = \sum_{\mu\nu} (\langle \varphi | (\sigma.n)_{\mu} | \sigma.n \rangle_{\mu} | \varphi \rangle - \langle \varphi | (\sigma.n)_{\mu} | \varphi \rangle \langle \varphi | (\sigma.n)_{\nu} | \varphi \rangle) d\alpha^{\mu} d\alpha^{\nu}$$

$$g = \begin{pmatrix} 1 - \langle \varphi | (\sigma.n)_{1} | \varphi \rangle^{2} & \cdots & g_{1M} \\ \vdots & \ddots & \vdots \\ g_{M1} & \cdots & 1 - \langle \varphi | (\sigma.n)_{M} | \varphi \rangle^{2} \end{pmatrix}^{1 - \langle \varphi | (\sigma.n) \otimes I \dots \otimes I | \varphi \rangle^{2}}$$

$$g = \begin{pmatrix} Var[(\sigma, n)_1] & \cdots & g_{1M} \\ \vdots & \ddots & \vdots \\ g_{M1} & \cdots & Var[(\sigma, n)_M] \end{pmatrix}$$

$$\mathbf{E} = \inf_{n} \left[Tr(g) \right] = \inf_{n} \sum_{\mu} Var\left[(\sigma.n)_{\mu} \right]$$

V- Conclusions

• The spin is an elusive property, but it informs on how a given particle transforms under rotations.

• The expectation value of a spin along a given direction $\langle \psi | \sigma_n | \psi \rangle$, informs on the lack of information that the observer has on the spin of $|\psi \rangle$ along n.

• From a distance on the space of states, we derive an entanglement measure that is expressed as a function of the variance of the spin.

Thank you