Quantum state estimation

Challenges and solutions, methods of statistical inference

Arthur Vesperini

Quantum statistics: generalities

Density operators and measurement basis

<u>Classical coin</u>

x = 0, 1

<u>Quantum coin</u>

$$|x\rangle = \alpha |0\rangle + \beta |1\rangle$$

<u>Classical coin</u>

$$x = 0, 1$$

<u>Quantum coin</u>

$$|x\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$P(x) = p_0 \delta(x) + p_1 \delta(x - 1)$$

Population sample

<u>Classical coin</u>

$$x = 0, 1$$

$$P(x) = p_0 \delta(x) + p_1 \delta(x-1)$$

Population sample

<u>Quantum coin</u>

$$|x\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$P(|x\rangle) = \operatorname{Tr}(\rho|x\rangle\langle x|)$$

$$p = \begin{pmatrix} p_0 & p_{01} \\ p_{01}^* & p_1 \end{pmatrix}$$

Qubit / spin-1/2

"Classical" probabilistic mixture (diagonal matrix) of $|0\rangle$ and $|1\rangle$

$$\rho_c = \frac{1}{2} (|0\rangle \langle 0| + |1\rangle \langle 1|)$$

Pure quantum superposition (off-diagonal "interferences")

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

 $\rho_{+} = \frac{1}{2} (|0\rangle \langle 0| + |1\rangle \langle 1| + |0\rangle \langle 1| + |1\rangle \langle 0|)$

Tomographic completeness: 3 independent basis of measurement ("quorum" of observables).

<u>Classical coin</u>

$$x = 0, 1$$

$$P(x) = p_0 \delta(x) + p_1 \delta(x - 1)$$

Quantum coin

$$|x\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$P(|x\rangle) = \operatorname{Tr}(\rho|x\rangle\langle x|)$$

Population samples

Standard scheme: Linear Inversion

The problem of positivity

<u>Main references:</u> [Řeháček et al., 2001; Hradil et al., 2004; Blume-Kohout, 2010]

Linear inversion: principle

Direct linear inversion

$$f_j = \operatorname{Tr}(\rho_{exp}|x_j\rangle\langle x_j|) = \langle x_j|\rho_{exp}|x_j\rangle$$

$$\rho_{exp} = \frac{1}{2} (\mathbb{I} + \vec{n}_{exp} \cdot \vec{\sigma})$$

$$\rho_{exp} = \frac{1}{2} (\mathbb{I} + \vec{n}_{exp} \cdot \vec{\sigma})$$

 $\rho = |0\rangle\langle 0| = \frac{1}{2}(\mathbb{I} + \sigma_z)$

$$\rho_{exp} = \frac{1}{2} (\mathbb{I} + \vec{n}_{exp} \cdot \vec{\sigma})$$

$$|n_i^{exp}| \le 1$$

hence \vec{n}_{exp} belongs to a "Bloch cube".

In particular, we might have:

$$\left|\vec{n}_{exp}\right| > 1$$

$$p_{\pm n}^{exp} = \lambda_{\pm n} = \frac{1 \pm |\vec{n}|}{2}$$

is negative or greater than one if $|\vec{n}| > 1$ (outside of the Bloch ball).

$$p_{\pm n}^{exp} = \lambda_{\pm n} = \frac{1 \pm |\vec{n}|}{2}$$

is negative or greater than one if $|\vec{n}| > 1$ (outside of the Bloch ball).

Generally ill-defined probability weights

In quantum systems, there always exists an *infinite number of measurement basis*.

In quantum systems, there always exists an *infinite number of measurement basis*.

Nonnegativity is only guaranteed for the measurement basis of the chosen quorum (axis of the cube).

In quantum systems, there always exists an *infinite number of measurement basis*.

Nonnegativity is only guaranteed for the measurement basis of the chosen quorum (axis of the cube).

One can gets negative probabilities for observables that have not been measured.

Maximum Likelihood Estimation

Principle, extremal equation, algorithm and flaws

<u>Main references:</u> [Banaszek, 1999; Řeháček et al., 2001; Hradil et al., 2004; Blume-Kohout, 2010]

MLE reconstruction of the density matrix of a single-mode radiation field. Image from K. Banaszek et al, 1999

MLE of quantum states: principle

What state is most likely to have produced a given experimental outcome $\mathcal{M} = \{|x_1\rangle, ..., |x_N\rangle\}$?

Maximizing the likelihood functional:

$$(\mathcal{L}(\rho))^{1/n} = \prod_{j}^{M} p(|x_j\rangle|\rho)^{f_j}$$

<u>MLE of quantum states: principle</u>

What state is most likely to have produced a given experimental outcome $\mathcal{M} = \{|x_1\rangle, ..., |x_N\rangle\}$?

Maximizing the likelihood functional:

$$(\mathcal{L}(\rho))^{1/n} = \prod_{j}^{M} p(|x_j\rangle|\rho)^{f_j}$$

equivalent to minimizing the statistical distance (Kullback-Leibler divergence):

$$D(\mathbf{f}, \mathbf{p}) = -\sum_{j}^{M} f_{j} \ln(p_{j})$$

MLE of quantum states: extremal equation

$$\frac{\text{General solution: extremal equation}}{R\rho_e = \rho_e}$$

with
$$R = \sum_{j}^{M} \frac{f_{j}}{\langle x_{j} | \rho_{e} | x_{j} \rangle} |x_{j} \rangle \langle x_{j}$$

If eigenbasis is known, we have
$$\rho = \sum_k r_k |\psi_k\rangle \langle \psi_k |$$
,

hence
$$f_j = \langle x_j | \rho | x_j \rangle = \sum_k r_k | \langle x_j | \psi_k \rangle |^2$$

Finding the eigenvalues is a linear positive problem for which converging algorithms are available (e.g. expectation-maximization algorithm).

This suggests performing the reconstruction in two steps to be repeated iteratively:

This suggests performing the reconstruction in two steps to be repeated iteratively:

• find the most likely eigenvalues in a fixed basis (linear positive problem).

This suggests performing the reconstruction in two steps to be repeated iteratively:

- find the most likely eigenvalues in a fixed basis (linear positive problem).
 - rotate the eigenbasis in the "good" direction (appropriate rotation found considering the variation of the log-likelihood).

This suggests performing the reconstruction in two steps to be repeated iteratively:

- find the most likely eigenvalues in a fixed basis (linear positive problem).
 - rotate the eigenbasis in the "good" direction (appropriate rotation found considering the variation of the log-likelihood).

MLE of quantum states: relation to linear inversion

Linear inversion \sim unconstrained MLE

Example of likelihood function, with both constrained and unconstrained maxima shown, in a cross-section of the single-spin Bloch sphere. Figure from [Blume-Kohout, 2010]

Example of likelihood function, with both constrained and unconstrained maxima shown, in a cross-section of the single-spin Bloch sphere. Figure from [Blume-Kohout, 2010]

<u>MLE of quantum states: relation to linear inversion</u> $ho_{ m tomo}$ Linear inversion \sim unconstrained MLE $\hat{ ho}_{ ext{MLE}}$ Negative tomographic estimates • $\rho_{tomo} \ge 0 \implies \max(\mathcal{L}(\rho)) = \mathcal{L}(\rho_{tomo})$ • $\forall \lambda_i^{tomo} < 0 , \exists \lambda_i^{MLE} = 0$ Positive states Example of likelihood function, with both

Example of likelihood function, with both constrained and unconstrained maxima shown, in a cross-section of the single-spin Bloch sphere. Figure from [Blume-Kohout, 2010]

<u>MLE of quantum states: relation to linear inversion</u> ho_{tomo} Linear inversion \sim unconstrained MLE OMLE Negative tomographic estimates • $\rho_{tomo} \ge 0 \implies \max(\mathcal{L}(\rho)) = \mathcal{L}(\rho_{tomo})$ • $\forall \lambda_i^{tomo} < 0$, $\exists \lambda_i^{MLE} = 0$ Positive states A finite number of measurement cannot justify Example of likelihood function, with both constrained and unconstrained maxima shown, in a a vanishing probability!

cross-section of the single-spin Bloch sphere. Figure from [Blume-Kohout, 2010]

MLE and linear inversion of quantum states: flaws

• Generally leads to negative or vanishing probabilities.

<u>MLE and linear inversion of quantum states: flaws</u>

- Generally leads to negative or vanishing probabilities.
- Do not provide well-defined error bars.

<u>MLE and linear inversion of quantum states: flaws</u>

- Generally leads to negative or vanishing probabilities.
- Do not provide well-defined error bars.

<u>Flaws inherent to frequentist approaches to quantum state</u> <u>reconstruction.</u>

Somehow related to the infinite number of observables: the estimation closest from observed frequencies fails to describe unmeasured events.

Bayesian Mean Estimation

Principle, extensivity, pros and cons

<u>Main reference:</u> [Blume-Kohout, 2010]

 $p(\rho|\mathcal{M}) = \frac{p(\mathcal{M}|\rho)p(\rho)}{p(\mathcal{M})}$

Bayes theorem

BME of quantum states: principle

$$\rho_B = \int \rho \pi_f(\rho) d\rho = \frac{\int \rho \mathcal{L}(\rho) \pi_0(\rho) d\rho}{\int \mathcal{L}(\rho) \pi_0(\rho) d\rho}$$

BME of quantum states: principle

$$\rho_B = \int \rho \pi_f(\rho) d\rho = \frac{\int \rho \mathcal{L}(\rho) \pi_0(\rho) d\rho}{\int \mathcal{L}(\rho) \pi_0(\rho) d\rho}$$

Provided a reasonable (*robust*) prior was chosen:

- no vanishing probabilities
- extensive with respect to sample size

BME of quantum states is extensive

Extreme example:
$$\mathcal{M} = \{|0\rangle, ..., |0\rangle\}, \ \pi_0 = c$$

$$\rho_B = \int \pi_f(\rho) \rho d\rho$$

$$=\frac{\int (\rho_{00})^N \rho d\rho}{\int (\rho_{00})^N d\rho_{00}} = (N+1) \int (\rho_{00})^N \rho d\rho$$

BME of quantum states is extensive

Extreme example:
$$\mathcal{M} = \{|0\rangle, ..., |0\rangle\}, \ \pi_0 = c$$

$$(\rho_B)_{00} = (N+1) \int (\rho_{00})^{N+1} d\rho_{00} = \frac{N+1}{N+2}$$

$$(\rho_B)_{11} = \frac{1}{N+2}$$

• Average over the whole Hilbert space (rather than "one-point estimation").

- Average over the whole Hilbert space (rather than "one-point estimation").
- Plausible reconstructed statistics: extensive in sample size, no vanishing or negative probability.

- Average over the whole Hilbert space (rather than "one-point estimation").
- Plausible reconstructed statistics: extensive in sample size, no vanishing or negative probability.
- Provide natural, well-motivated error bars (*honest* estimation).

- Average over the whole Hilbert space (rather than "one-point estimation").
- Plausible reconstructed statistics: extensive in sample size, no vanishing or negative probability.
- Provide natural, well-motivated error bars (*honest* estimation).
- Optimize accuracy (in terms of *operational divergence*).

- Average over the whole Hilbert space (rather than "one-point estimation").
- Plausible reconstructed statistics: extensive in sample size, no vanishing or negative probability.
- Provide natural, well-motivated error bars (*honest* estimation).
- Optimize accuracy (in terms of *operational divergence*).

• Sensitive to choice of prior.

- Average over the whole Hilbert space (rather than "one-point estimation").
- Plausible reconstructed statistics: extensive in sample size, no vanishing or negative probability.
- Provide natural, well-motivated error bars (*honest* estimation).
- Optimize accuracy (in terms of *operational divergence*).

- Sensitive to choice of prior.
- Relatively low performance (numerical integration, e.g. Metropolis-Hastings algorithm).

Different applications need different methods:

Different applications need different methods:

• <u>Linear inversion:</u> fastest and easiest to implement; still very useful for applications with large number of measurements and low sensitivity to negativity (e.g. X-ray tomography).

Different applications need different methods:

- <u>Linear inversion:</u> fastest and easiest to implement; still very useful for applications with large number of measurements and low sensitivity to negativity (e.g. X-ray tomography).
- <u>MLE:</u> negativity-sensible applications, with few measurements (e.g. entanglement experiments).

Different applications need different methods:

- <u>Linear inversion:</u> fastest and easiest to implement; still very useful for applications with large number of measurements and low sensitivity to negativity (e.g. X-ray tomography).
- <u>MLE:</u> negativity-sensible applications, with few measurements (e.g. entanglement experiments).
- <u>BME:</u> most rigorous and computationally costly, preferred when accurate *prediction* and well-defined error bars are crucial (e.g. quantum computers).

Different applications need different methods:

- <u>Linear inversion:</u> fastest and easiest to implement; still very useful for applications with large number of measurements and low sensitivity to negativity (e.g. X-ray tomography).
- <u>MLE:</u> negativity-sensible applications, with few measurements (e.g. entanglement experiments).
- <u>BME:</u> most rigorous and computationally costly, preferred when accurate *prediction* and well-defined error bars are crucial (e.g. quantum computers).

<u>Frequentist approach:</u> accurate description of the past

Bayesian approach: fitted for predictions of the future

Bibliography

Banaszek, K., G. M. D'Ariano, M. G. A. Paris, and M. F. Sacchi. 1999.
"Maximum-Likelihood Estimation of the Density Matrix." *Physical Review* A 61 (1): 010304. <u>https://doi.org/10.1103/PhysRevA.61.010304</u>.
Blume-Kohout, Robin. 2010. "Optimal, Reliable Estimation of Quantum States." *New Journal of Physics* 12 (4): 043034. <u>https://doi.org/10.1088</u> /1367-2630/12/4/043034.

Hradil, Zdeněk, Jaroslav Řeháček, Jaromír Fiurášek, and Miroslav Ježek.
2004. "3 Maximum-Likelihood Methodsin Quantum Mechanics." In *Quantum State Estimation*, edited by Matteo Paris and Jaroslav Řeháček, 649:59–112. Lecture Notes in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg. <u>https://doi.org/10.1007/978-3-540-44481-7_3</u>.
Řeháček, J., Z. Hradil, and M. Ježek. 2001. "Iterative Algorithm for Reconstruction of Entangled States." *Physical Review A* 63 (4): 040303. <u>https://doi.org/10.1103/PhysRevA.63.040303</u>.

Thanks for your attention.