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Density operators and measurement 
basis

Quantum statistics: 
generalities
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“Classical” probabilistic mixture 
(diagonal matrix) of      and       

Pure quantum superposition 
(off-diagonal “interferences”)
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Tomographic completeness: 3 independent basis 
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Standard scheme:
Linear Inversion

 The problem of positivity

Main references: 
[Řeháček et al., 2001;
Hradil et al., 2004;
Blume-Kohout, 2010]



Direct linear inversion
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Experimental outcome:

True statistics:
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hence           belongs to a “Bloch 
cube”. 

In particular, we might have:
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Generally ill-defined 
probability weights
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In quantum systems, there always exists 
an infinite number of measurement basis.

Nonnegativity is only guaranteed for the 
measurement basis of the chosen quorum 
(axis of the cube).

One can gets negative probabilities for 
observables that have not been measured.

Linear inversion: 2-level systems (qubit/spin-½)



Maximum Likelihood 
Estimation
Principle, extremal equation,
algorithm and flaws

MLE reconstruction of the density matrix 
of a single-mode radiation field.

Image from K. Banaszek et al, 1999

Main references: 
[Banaszek, 1999; 
Řeháček et al., 2001;
Hradil et al., 2004;
Blume-Kohout, 2010]



MLE of quantum states: principle
What state is most likely to have produced a given experimental 
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MLE of quantum states: principle
What state is most likely to have produced a given experimental 
outcome        ?

Maximizing the likelihood functional:

equivalent to minimizing the statistical distance (Kullback-Leibler divergence):



MLE of quantum states: extremal equation

General solution: extremal equation

with



MLE of quantum states: a simple algorithm

If eigenbasis is known, we have                                      ,

hence

Finding the eigenvalues is a linear positive problem for which converging 
algorithms are available (e.g. expectation-maximization algorithm).
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MLE of quantum states: relation to linear inversion

A finite number of 
measurement cannot justify 
a vanishing probability!

Linear inversion ~ unconstrained MLE

●  
 

●

Example of likelihood function, with both 
constrained and unconstrained maxima shown, in a 
cross-section of the single-spin Bloch sphere.
Figure from [Blume-Kohout, 2010]
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MLE and linear inversion of quantum states: flaws

● Generally leads to negative or vanishing probabilities.

● Do not provide well-defined error bars.

Flaws inherent to frequentist approaches to quantum state 
reconstruction.

Somehow related to the infinite number of observables: the estimation 
closest from observed frequencies fails to describe unmeasured events.



Bayesian Mean 
Estimation
Principle, extensivity, pros and cons

Bayes theorem

Main reference: 
[Blume-Kohout, 2010]
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BME of quantum states: principle

Provided a reasonable (robust) prior 
was chosen:

● no vanishing probabilities

● extensive with respect to sample 
size 
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BME of quantum states: pros and cons

● Average over the whole Hilbert 
space (rather than “one-point 
estimation”).

● Plausible reconstructed statistics: 
extensive in sample size, no 
vanishing or negative probability.

● Provide natural, well-motivated 
error bars (honest estimation).

● Optimize accuracy (in terms of 
operational divergence).

● Sensitive to choice of prior.

● Relatively low performance 
(numerical integration, e.g. 
Metropolis-Hastings algorithm).
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Different applications need different methods:

● Linear inversion: fastest and easiest to implement; 
still very useful for applications with large number of 
measurements and low sensitivity to negativity (e.g. 
X-ray tomography).

● MLE: negativity-sensible applications, with few 
measurements (e.g. entanglement experiments).

● BME: most rigorous and computationally costly, 
preferred when accurate prediction and well-defined 
error bars are crucial (e.g. quantum computers).

Frequentist approach:
accurate description 
of the past

Bayesian approach:
fitted for 
predictions of the 
future

Conclusion
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