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The heart of Bayes statistics is the Bayes theorem.
The rules of Bayesian probability theory can be derived 

from just two basic rules (Cox, 1946)

The Bayes theorem

Suppose to have two random variables X and Y, and consider 
a total of N trials in which we sample both X and Y. 

Let the number of such trials in which X=xi and Y=yj be nij. 
Also, let the number of trials in which X=xi (irrespective of the 

value that Y takes) be denoted by ci

Joint 
probability

Conditional 
probability

Marginal 
probability

Using the product rule, considering that 
P(X,Y)=P(Y,X), and applying in the last 

passage the sum rule

SUM RULE

PRODUCT RULE

BAYES THEOREM



Interpretation of Bayesian probability

Let us now consider the case where one has two boxes B 
(Y=B), one red (r) and one blue (b). Both boxes are filled with 

fruit (X=F), specifically, with oranges (o) and apples (a). 

Let’s take into account the case where we are told that a 
piece of fruit has been selected and it is an orange, and we 

would like to know which box it came from. 
We can answer the problem using Bayes theorem

We can provide an important interpretation of Bayes’ 
theorem as follows.

If we had been asked which box had been chosen before being told the 
identity of the selected item of fruit, then the most complete 

information we have available is p(B).
We call this the prior probability because it is the

probability available before we observe the identity of the fruit.

Once we are told that the fruit is an orange, we can then use Bayes’ 
theorem to compute the probability p(B|F),

which we shall call the posterior probability because it is the probability 
obtained after we have observed F.

Nota bene: in this example, the prior probability of selecting the red box 
was 4/10, so that we were more likely to select the blue box than the 
red one. However, once we have observed that the piece of selected 

fruit is an orange, we find that the posterior probability of the red box is 
2/3, so now it is more likely that the box we selected was, in fact, the 

red one.

Bayes’ theorem is used to convert a prior probability into a posterior 
probability by incorporating the evidence provided by the observed 

data.

Knowing that:



Bayesian framework through GWs Gravitational waves in brief
The motion of two compact objects about to merge creates a distinct 

perturbation of the space-time metrics which propagates in space as a wave

where:

With some lengthy calculations, one can demonstrate that:

Metric tensor
Minkowsky metric

Perturbation

where h̅ is the trace reversed tensor.
If we consider two particles along the x axis, separated by a distance ε, the 
passage of the wave induces a change in the distance:

x

ε

Let us now take a closer look to all the 
members appearing in the Bayes theorem

We will now examine one by one all the pieces of the 
Bayes theorem, and we will relay on the physics case 
of gravitational wave as a direct example for a better 

understanding

Prior distribution

Likelihood

Evidence

Posterior distribution

(Credit Ligo)

From the investigation of a single signal to 
population studies (see backup slides) the analysis 

procedure is completely carried using the Bayes 
framework 



Prior distribution
Priors express our present state of knowledge about the parameters 

of interest, which we wish to constrain by analyzing new data

Uninformative priors
They express our state of ignorance 

and have very little restricting 
power. Typically, their distributions 

are diffuse.

Informative priors
Characterized by very restricting 

distributions. They might come from 
the analysis of some previous data

There are some general recipes to keep in mind when constructing 
uninformative priors:
• Laplace’s principle of insufficient reason: assigning equal probability to all 

possible values of the parameters
• Invariance by transformation: If the priors are uninformative, then, we 

should make the same Bayesian inference under a given transformation, 
which implies that the priors should also be invariant to the transformation

• Jeffreys rule: 

• Maximum entropy: given some constrains (i.e. ∑pi=1) on the prior, the 
prior should be chosen to be the distribution with the largest entropy S 
which follows these constraints 

Example: without constrains the 
uniform distribution has the maximum S

Priors for Gravitational waves
Example: when considering the sky location of a BH merger, 
it is reasonable to choose an isotropic prior that weights 
each patch of sky as equally probable. One possible choice 

can be the uniform or log-uniform distributions

Warning about priors
The choice about is also leaded to the 

specific science case and must reflect the 
physics behind a given model. 

Sometimes priors are chosen following only 
criteria of mathematical convenience.

This can induce sever biases



Likelihood

The likelihood function is something that 
we choose.

It is a description of the 
measurement. 

By writing down a likelihood, we implicitly 
introduce a noise model

Likelihood for Gravitational waves
For gravitational-wave astronomy, is typically assumed a Gaussian-noise likelihood:

d: measured GW strain
θ: model parameters
σ: detector noise

The likelihood depends on all the model 
parameters.

Sometimes one could be interested in studying 
just few parameters.

In that case is useful to define the 
marginalized (integrated) likelihood over the 
parameters we are not interested in (called 

nuisance parameters) 

Marginalized likelihood for Gravitational waves

For the sake of simplicity, we can consider the case of a binary BH merging. 
The strain signal can hence be described by a θ=15 parameters model:

Intrinsic parameters (8):
Primary mass (m1), secondary mass (m2), 
primary spin vector (s1), secondary spin 
vector (s2)
Extrinsic parameters (7): 
Inclination angle (ί), polarization angle (ψ), 
phase at coalescence (ϕc), right ascension 
(RA), declination (DEC), luminosity 
distance (DL), time of coalescence (t)

➢ Distance marginalization
➢ Phase marginalization
➢ Time marginalization



Evidence
The evidence act as a normalization constant 

for the prior.
Calculating the evidence can be 

computationally challenging.

The evidence becomes crucial when comparing different models.
Assume to have two different models MA and MB, with a different number of 
parameters θ and ν. Model selection answers the question: which model is 

statistically preferred by the data and by how much? 
It is possible to compare the two models by comparing their evidence:

Bayes 
Factor

If |logBF|>>1 then one model is preferred over the other. The sign of log BF 
tells us which model is preferred. A threshold of |logBF|=8 is often used as 

the level of “strong evidence” in favor of one hypothesis over another 
(Jeffreys, 1961)

Formally, the correct metric to compare two 
models is not the Bayes factor, but rather the odds

Model selection applied to GW

The most straightforward example is the comparison 
between a “signal model” (ZN) and a “noise only model” (ZS)

It is also possible to compare the same model but with different 
priors: BH merging with and without spin. The Bayes factor 
comparing these models would tell us if the data prefer spin.

Occam Factor
Bayesian evidence encodes two pieces of information: (1) how model fits data 

(likelihood), (2) the act of marginalization takes into account the size of the 
parameter space volume.

A model with a decent fit and a small prior volume often yields a greater evidence 
than a model with an excellent fit and a huge prior volume.

Bayes factor penalizes the more complicated model for being too complicated.

One additional example is to compare models based on different 
theories of general relativity



Posterior probability

The posterior distribution p(θ|d) is the probability density 
function for the continuous variable θ given the data d.

Calculating the posterior is a classical 
inverse problem, that are renown to 
be computationally challenging.

The curse of dimensionality, example: GWs
To calculate the posterior probability for the 15 parameters 
BH merger case we could naively think to create a grid with 

10 bins in every dimension and evaluate the likelihood at 
each grid point. Even with this coarse resolution, our 

calculation It is computationally prohibitive to carry out, as 
it requires 1015 likelihood evaluations.

In double precision it means to calculate a ≈8000TB tensor

Sampling the posterior distribution
The posterior distribution can be obtained using stochastic samples. One of 
the most common approach is to use Markov Chain Monte Carlo (MCMC). 

Example, (MHA):
1. Initialize a random guess for θ=θ =0

2. For t in n_steps:
a) Generate θ’=θ 1+RandomNumber
b) Calculate acceptance ratio R:
c) Set θ =θ’ if R<Uniform[0,1)

• Sometimes there could be a “burn in phase”: sampling of the distribution begins 
after m_BurnIn_steps to avoid recording the initial less accurate samples

• One can think to sample a value every k steps (“lag”)
• It is possible to build lots of variations, for example: Random walk Metropolis–

Hastings (RWMH) where θ’ does not depend on θt-1



Mapping the Milky Way

Using a Bayesian approach, it is possible to recreate 
a map of the distribution of dust in the Milky Way. 
The method is based on the reddening induced by 

dust on the starlight Visible

FIR

Dust reddening
➢ Dust grains efficiently scatters short wavelength 

photons (“blue light”). 
➢ Dust clouds reduces the magnitude of stars in 

high-frequency bands (“reddening”)
➢ The amount of reddening is proportional to the 

amount of dust along the line of sight

The reddening profile (E, defined as color excess in some pair of 
passbands, i.e. E[B-V]) at a given distance (μ) depends on a set of 

parameters (α, for example the dust density). Knowing the 
photometry mi of a certain star, we can write:

We wish to determine the reddening profile E, so we can 
rewrite the posterior as:

where p(μi, Ei | mi) is a marginalized likelihood over the stellar 
types Θ. Finally, the reddening profile E is param etrized as a 

picewise linear linear function in μ (αi=ΔE(i))



Test with mock stars
❖ Inferred posterior densities of 150 simulated stars stacked on top of one 
another. This shows the information fed into the second stage of the analysis, 
where the reddening as a function of distance is recovered from the individual 

stellar probability densities.
❖ The curves show possible reddening profiles, conditioned on the mock 
photometry. The green curve traces the most probable reddening profile. For 
this example, a single cloud of depth E(B − V ) = 0.5 at distance modulus μ = 8.5 

(dashed black line) has been used.
❖ A priori, having no reddening away from the cloud is unlikely, and this induces a 

slight gradual increase in inferred reddening beyond the cloud.

Distance and reddening estimates for four 
simulated stars. The posterior in distance 

and reddening is shown as a heat map, the 
“true” distances and reddenings for the 

stars are shown as green dots. 

(Green et al, 2014)

(Green et al, 2014)



Rendering of dust distribution

Two video showing the 3D 
distribution of dust in the 

Milky Way

Towards
Galactic 
CenterSUN

• Bobbing through galactic plane
• Milky Way tour

(Green et al, 2019)



Cumulative reddening distribution
(Green et al, 2019)



Final Remarks

❑ Bayesian statistical methods start with existing 'prior' beliefs, and update these using data to give 'posterior' beliefs.

❑ The core of Bayes statistics is Bayes theorem, composed by 4 main ingredients:
▪ Prior distribution: express the present state of knowledge

▪ Likelihood: description of the measurement

▪ Evidence: used to compare different models

▪ Posterior distribution: probability for a given model parameters knowing the data

❑ Bayes statistics is nowadays widely used in almost all branch of science. Two examples applied to astrophysics are:
▪ Gravitational waves: from the analysis of single events to population studies 

▪ Studies of the Milky Way structure

References:
o C. M. Bishop, “Pattern recognition and machine learning”, 2006

o S. Sharma, “Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy”, 2017

o Thrane and Talbot, “An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model 

selection, and hierarchical models”, 2020

o Green et. al., “Measuring distances and reddenings for a billion stars: toward a 3d dust map from pan-starrs 1”, 2014

o Green et. al., “A 3D Dust Map Based on Gaia, Pan-STARRS 1 and 2MASS”, 2019
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Hierarchical Models
Hierarchical Bayesian inference is a formalism, which allows 

us to go beyond individual events in order to study 
population properties

The population properties of some set of events is described 
by the shape of the prior

If we consider the analysis of a set of events d

Hyper-posterior Hyper-priorHyper-evidence

Similarly to standard Bayesian analysis, one can make model 
comparison by comparing the evidence for different hyper-models

Calculating hyper-evidence can be computationally intensive!
One possible way is to break the integrals into individual integral 

for each event and subsequently recombine them (“recycling”)

θ=m

Λ=α)H sucU 

It is possible to consider 
diverse mass 

distribution. Different 
models are build 

considering various 
physical effects: PLP 

(Gaussian peak 
introduced to account 

pile-up from pulsational
pair instability SN), MP 

(account for hierarchical 
merging), …

(R. Abbott et al, 2021)



Stars distribution

SUN
GC

SUN

Distribution of stars of absolute magnitude 0 < Mr < 
1 with well-determined distances

Distribution of stars 

GC

(Green et al, 2019) (Green et al, 2019)



Photometric parallaxes

▪ A star is observed at location (1) in color–color space. 
▪ Its dereddened colors may lie along any point on the 

gray line, parallel to the reddening vector.
▪ The intersections of this line with the model stellar 

locus, labeled (2) and (3), represent the most likely 
intrinsic stellar types.

▪ The posterior density for the star will thus have two 
modes—one at larger distance and lesser reddening (2) 
and one at smaller distance and greater reddening (3). 

For simplicity, we assume Solar metallicity in this 
example. 

This is how one would make a distance and reddening 
determination by eye. Our more rigorous Bayesian 

method takes into account photometric uncertainties, 
as well as priors on stellar type and Galactic structure

(Green et al, 2014)



The Solar system neighborhood

(Green et al, 2019)


