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Photonic Crystals

A photonic crystal is a material with a periodic variation of the
refractive index, i.e. n(r) = n(r + R)

Figure: Reproduced from [1]

As a result, the propagation of light is affected: some modes can
propagate, while others cannot
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Maxwell equations and
constitutive relations

• Light propagation in medium is governed by Maxwell
equations in matter, that is{

∇ · D = ρ, ∇ · B = 0,
∇ × E + ∂B

∂t = 0, ∇ × H − ∂D
∂t = J.

• Generally, the displacement field D may be written as a
functional of the electric field E , i.e. D[E ] (and similarly for
H and B)

• The equations that express this dependence are known as
constitutive relations

• Quite generally, we can write

Di/ε0 =
∑

j
εijEj +

∑
j,k
χijkEjEk + O(E 3)
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Maxwell equations and
constitutive relations

• For many dielectrics, we can make use of the following
approximations

1. Linear-response regime, i.e. we neglect terms ∝ E 2 and higher
2. Isotropy, that is, εij = δijε
3. Non-dispersive material, i.e. ε(ω, r) ≡ ε(r)
4. Transparent material, that is, ε(r) is real and positive

• With these approximations and with no sources (ρ = 0,
J = 0), the equations become{

∇ ·
[
ε(r)E(t, r)

]
= 0, ∇ · H(t, r) = 0,

∇ × E(t, r) + µ0
∂H(t,r)

∂t = 0, ∇ × H − ε0ε(r)∂E(t,r)
∂t = 0.

• Since Maxwell equations are linear, we separate the time
dependence from the spatial dependence by expanding into
harmonic modes as

E(t, r) = E(r)e−iωt and H(t, r) = H(r)e−iωt
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Eigenvalue Problem

• The two divergence equations tell us that the field
configurations are transverse

• The two curl equations can be decoupled and we end up with
the master equation

Θ̂H(r) =
(ω

c
)2

H(r)

where the linear and hermitian operator Θ̂ is defined as
Θ̂[·] .= ∇ ×

[
1

ε(r)∇ × [·]
]
, and, for ε > 0 it is also positive

semi-definite
• Then, we recover E as

E(r) = i
ωε0ε(r)∇ × H(r).

In this way εE is transverse by construction
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Bloch Theorem

• If the permittivity is periodic in space, e.g. ε(r + R) = ε(r),
then [Θ̂, T̂R ] = 0, and the solution can be written as

Hk(r) = e−ik·r uk(r)

with uk(r + R) = uk(r). This result is generally known as
Bloch Theorem

• Since we can focus only on a finite region of the space, the
eigenvalues are discretized by the band index n, i.e.
ω → ωn(k), where also k varies in a finite region known as
Brillouin zone
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Symmetries, TE and TM modes

• Let us suppose R = maŷ where m is an integer and a is the
lattice constant (see the figure below)

Figure: Reproduced from [1]

• Recall that, for a general rotation R ∈ O(3)...
1. the field E(r) transforms as E ′(r) ≡ ÔRE(r) = RE(R−1r)
2. the field H(r) transforms as

H ′(r) ≡ ÔRH(r) = det(R)RH(R−1r)
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Symmetries, TE and TM modes

• In the system above, there is mirror symmetry in the yz plane,
expressed by the reflection matrix Ix = diag(−1, 1, 1) ∈ O(3)

• Since det(Ix ) = −1, and ÔIx F = λ±F with λ± = ±1 and
F = {H,E}, we have

1. for λ+ → TM modes → field configuration {Hx ,Ey ,Ez}
2. for λ− → TE modes → field configuration {Ex ,Hy ,Hz}

• Anyway...since ε depends only on y , there is continuous
invariance along x and z , that is, H and E are eigenfunctions
of the translation operators T̂x and T̂z

• As a consequence, the field can be written as

F (x , y , z) = e−ik||·(x ,0,z)F̃ (y)

with k || = (kx , 0, kz)
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Symmetries, TE and TM modes

• So what? We can always rotate the system such that
k || = (kx , 0, kz) → (0, 0, k ′

z), i.e. kx = 0
• The consequence of this is that the field configurations in the

TE or TM modes can always be constructed, not only in the
yz plane

• In the TM modes, the differential equation for H̃x (y) is

− d
dy

( 1
ε(y)

dH̃x (y)
dy

)
=

(
ω2 − k2

||/ε(y)
)
H̃x (y)

• Let us consider a simulation in which we have two materials
with lattice constant a = dA + dB, with di the thickness of
material i = A,B, and, for example, nA = 1.5 and nB = 3.5

• For simplicity, we put k|| = 0. As a consequence, from the
equations we have Ey = 0
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Simulation: Band-Structure.ipynb

Figure: First 4 bands with ε(y) = n2
A/ε0 for 0 < y < dA and

ε(y) = n2
B/ε0 for dA < y < dA + dB
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Anderson Localization

• So far, we have considered perfect objects, that is, they can
be built such that the function ε(r) is periodic

• For real systems, we must take into account also possible
perturbations/defects/disorders of the variables...

• The Anderson localization is the localization of a wave due to
the degree of randomness of the system

• For example, we may consider something like
εreal(r) = εideal(r) + δε(r) with δε(r) distributed with some
probability distribution function
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1D tight-binding model with disorder

• To get an idea of what Anderson localization is, let us
consider the following Hamiltonian

Ĥ = −J
∑

n

(
ĉ†

n+1ĉn + ĉ†
n ĉn+1

)
+

∑
n
ϵnĉ†

n ĉn

and the evolution of a single particle starting at |ψ(0)⟩ = |n0⟩
• The first term encodes the tunnelling between adjacent sites

while the second term represents the on-site energies
• In absence of disorder (as the case of a lattice with ϵn ≡ ϵ0 or
ϵn periodic), the state, in the simple case ϵn = ϵ0, evolves as

|ψ(t)⟩ = 1√
N

∑
k

e−ikn0e−iE(k)t |k⟩,

i.e., it is delocalized. Moreover, the energies are
E (k) = −2J cos(k)
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Simulation:
Anderson-Tight-Binding.ipynb

• To simulate disorder, we can generate random energies ϵn and
solve the eigenvalue problem

• In the code, the energies are generated as ϵn ∼ N (0, g2) for
n = −N, . . . ,N

• Concretely, this model simulates a 1D lattice with impurities...
• The code is open and free to use in the indico page :D
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Simulation:
Anderson-Tight-Binding.ipynb
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Photonic Crystals with disorder

• It should be clear that there are similarities between the
electrodynamics equations written so far and the
time-independent Schrodinger equation, that is

Θ̂H(r) =
(ω

c
)2

H(r), ĤΨ = EΨ

• In this case, we can simulate disorder by introducing a random
uncertainty in the permittivity, that is
εreal(r) = εideal(r) + δε(r)

• To check if the fields localize, we can compute the energy
density

u(y) = 1
4

(
|ε(y)Ez(y)|2 + |µ0Hx (y)|2

)
• Here, there is no periodicity. For a correct physical sense it is

better to use Dirichlet boundary conditions, that is, we
imagine the fields in a cavity
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Photonic Crystals with disorder

• Technically, there is no point in talking about wavenumbers
ky ...we only have a discrete set of frequencies ω1, ω2, . . .

• We generate the noise as δε(y) ∼ N (0, σ2) and compute the
effective permittivity as εreal(y) = εideal(y)(1 + σδε(y))

• In absence of disorder we should see delocalized fields...
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Simulation:
Anderson-Localization.ipynb
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Simulation:
Anderson-Localization.ipynb
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Simulation:
Anderson-Localization.ipynb

Lucio De Simone Anderson Localization in Photonic Crystal Systems 20 of 25



Simulation:
Anderson-Localization.ipynb
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Simulation:
Anderson-Localization.ipynb
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Conclusions and Outlook

• A photonic crystal is a material with a periodic variation of
the refractive index

• Symmetries help us simplify physical problems by reducing
their complexity and revealing what really determines the
system

• Anderson localization is a key effect that strongly influences
light confinement in disordered photonic structures

• Future work would aim to explore higher-dimensional
disordered structures and their possible applications in
photonic devices

• Maybe, when there’s some free time, we could try to simulate
the Anderson effect in more complex topologies...
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Well...Adios.

Thank you! :D
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