

Probing entanglement via $t\bar{t}$ production at LHC

PhD student: Lucio De Simone Prof. Alessandro Cerri 23rd Oct. 2025

Table of Contents

- Entanglement
 - Identifying/Quantifying Entanglement
 - Two-Qubits Density matrix
- $t\bar{t}$ production channels
 - What to measure
 - Polarizations \mathbf{B}^{\pm} , Correlation matrix C_{ii} ...which one?
 - Data
 - State Tomography
- Atlas Detector
 - Inner Detector
 - Calorimeter
 - Muon Spectrometer

- Entanglement: inseparable nature of states describing physical systems yielding nonlocal yet relativistically consistent correlations
- For bi-partite systems, separable states can always be written as

$$\rho = \sum_{i,j} p_{ij} |\psi_i^{(A)}\rangle \langle \psi_i^{(A)}| \otimes |\psi_j^{(B)}\rangle \langle \psi_j^{(B)}|$$

with $p_{ij} \ge 0$ and $\sum_{ij} p_{ij} = 1$, providing "classical" interpretation

- States not in this form are called entangled or non-separable
- The structure of these correlations allows distinguishing local from nonlocal, as stated by Bell's theorem[1]

$Identifying/Quantifying\ Entanglement$

- For bi-partite systems, such as $\mathcal{H}=\mathbb{C}^2\otimes\mathbb{C}^2$ or $\mathcal{H}=\mathbb{C}^2\otimes\mathbb{C}^3$, Peres-Horodecki criterion gives necessary and sufficient conditions such that a state is entangled[2, 3]
- For multi-partite systems, there are no general criteria yet but one can make use of entanglement witness that quantify the amount of entanglement
- In general, for bi-partite systems one can use
 - 1. von Neumann entropy $S[\rho] = -\text{Tr}(\rho_A \log(\rho_A)) = -\text{Tr}(\rho_B \log(\rho_B)) \text{ where } \rho_{A,B} = \text{Tr}_{B,A}\rho$
 - 2. concurrence $C[\rho] = \max(0, \lambda_1 \lambda_2 \lambda_3 \lambda_4) \in [0, 1]$, where λ_i are the eigenvalues, in decreasing order, of the hermitian matrix $R = \sqrt{\sqrt{\rho}\tilde{\rho}\sqrt{\rho}}$ with $\tilde{\rho} = \sigma_2^{(A)} \otimes \sigma_2^{(B)} \rho^* \sigma_2^{(A)} \otimes \sigma_2^{(B)}$
- ...what is the fate of entanglement under the action of a Lorentz transformation?

Two-Qubits Density Matrix

• The general form of $\rho \in \mathcal{H} = \mathcal{H}_2^{(A)} \otimes \mathcal{H}_2^{(B)}$, with $\mathcal{H}_2 \equiv \mathbb{C}^2$ representing a single spin 1/2 particle, is

$$\rho = \frac{1}{4} (I_4 + \sum_i B_i^+ \sigma_i^{(A)} \otimes I_2 + I_2 \otimes \sum_i B_i^- \sigma_i^{(B)} + \sum_{i,j} C_{ij} \sigma_i^{(A)} \otimes \sigma_j^{(B)})$$

where i, j = 1, 2, 3 and I_n representing the $n \times n$ identity matrix

- ullet Given an observable $\hat{\mathcal{O}}$, its expectation value is $\langle \hat{\mathcal{O}}
 angle = \mathrm{Tr}[
 ho \hat{\mathcal{O}}]$
- ${\bf B}^{\pm}$ and C_{ij} will be functions of the parameters describing the kinematics, the Mandelstam variable \sqrt{s} of the process and the scattering angle θ
- By measuring these 15 (or less, by using symmetries) expectation values, one can experimentally reconstruct the state \longrightarrow quantum tomography

$t\bar{t}$ production channels

• At the LHC energies, $t\bar{t}$ pair arises from pp collisions, summarized by the processes $gg \to t\bar{t}$ ($\approx 90\%$ at

 $\sqrt{s}=13$ TeV) and $q\bar{q}\to t\bar{t}$. At the leading order

- Why $t\bar{t}$? Top quarks have a lifetime ($\sim 10^{-25}s$) shorter than the time scale for hadronisation ($\sim 10^{-23}s$) and spin decorrelation ($\sim 10^{-21}s$)[4]
- $t\bar{t}$ pairs follow the chains[4] $t\bar{t} \rightarrow W^+b \ W^-\bar{b} \rightarrow$
 - A) $q\bar{q}'b q''\bar{q}'''\bar{b}$ (45.7%)
 - B) $q\bar{q}'bl^{-}\bar{\nu}_{l}\bar{b}+l^{+}\nu_{l}bq''\bar{q}'''\bar{b}$ (43.8%)
 - C) $I^+\nu_I b I^-\bar{\nu}_I \bar{b}$ (10.5%)

What to measure

- Leptons carry almost all the spin information of their parent top quarks → this is the only channel considered
- The normalized differential cross-section of the process is [5]

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega^+ d\Omega^-} = \frac{1 + \boldsymbol{B}^+ \cdot \boldsymbol{q}^+ - \boldsymbol{B}^- \cdot \boldsymbol{q}^- - \boldsymbol{q}^+ \cdot \boldsymbol{C} \cdot \boldsymbol{q}^-}{(4\pi)^2}$$

- From the kinematic reconstruction of each event, one can obtain the quantities \boldsymbol{B}^{\pm} and C_{ij} , reconstruct the state and then calculate, for e.g., the concurrence $C[\rho]$
- Or, equivalently, one can experimentally measure the quantity D defined as [6] $D = -3\langle\cos\varphi\rangle$, with

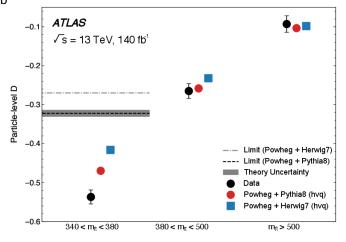
$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi} = \frac{1}{2} \left(1 - D\cos\varphi \right)$$

where φ is the angle between the lepton directions in each one of the parent t and \bar{t} rest frames

• There is a simple relation between D and C_{ij} ...that is,

$$D = \frac{\mathsf{Tr}[C_{ij}]}{3}$$

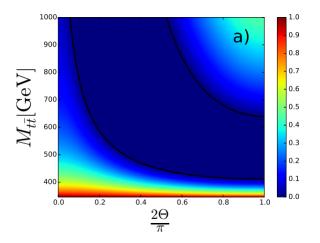
From the Peres - Horodecki criterion, one derives the condition


$$\operatorname{Tr}[C_{ij}] < -1,$$

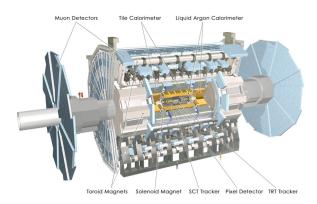
that is equivalent to $D<-\frac{1}{3}$

ullet The concurrence $\mathcal{C}[
ho]$ can also be computed and it is given by

$$C[\rho] = \frac{1}{2} \max(-1 - 3D, 0)$$


Using the data recorded during Run 2 at the LHC, with a centre of mass energy of $\sqrt{s}=13$ TeV with an integrated luminosity of 140 fb $^{-1}$

Particle-level Invariant Mass Range [GeV]


By reconstructing the state with experimental data, one reproduces the concurrence [7]

Atlas detector is made of 4 main parts (see the figure below): *Inner detector, Calorimeter, Magnet System* and *Muon Spectrometer*

Inner Detector

- The Inner Detector measures the direction, momentum, and charge of electrically-charged particles
- It reconstructs the tracks of charged particles from hits in the silicon pixel, microstrip, and straw-tube layers. The curvature of their tracks in the 2 T magnetic field is used to find the transverse momentum and charge
- Trivially... it takes the hits (r_i, ϕ_i, z_i) , reconstructs $r(\phi) = R$ and $z(\phi) = R \cot \theta \cdot \phi$ where θ is the angle with the z-axis. From R, we estimate p_T (transverse momentum), while from θ we estimate $p_Z = p_T \cot \theta$. Usually, experimentalists use the pseudo-rapidity $\eta = -\ln \tan(\theta/2)$

- The calorimeter measures particle energy through ionization and radiative processes such as bremsstrahlung and pair production, which together produce the characteristic electromagnetic or hadronic showers in dense absorber materials
- Typically, electrons, photons, and hadrons lose all their energy inside the calorimeters
- For muons, bremsstrahlung is negligible. Radiative losses scale as $-dE/dx \propto E/m^2$, so

$$\frac{(dE/dx)^{\mu}}{(dE/dx)^{e}} \simeq \left(\frac{m_{e}}{m_{\mu}}\right)^{2} \sim 10^{-5}$$

Muon Spectrometer

- Located outside the calorimeters, the muon spectrometer measures the momentum of muons that escape the inner detector.
- Based on the same principles as the inner detector, it reconstructs their curved trajectories in a large toroidal magnetic field (3.5T)
- The Muon Spectrometer constitutes the outermost layer of the detector. Anyway, neutrinos cannot be detected directly, their presence is inferred from the missing momentum among detected particles

Conclusions and Outlook

- The study of spin correlations in $t\bar{t}$ production establishes a direct link between *quantum information* and *high energy physics*, allowing the exploration of quantum entanglement in this high energy regime
- The top quark is an ideal probe: it decays before hadronizing, so its spin information is preserved and transferred to its decay products
- The quantum state tomography is a fundamental tool, as it allows the reconstruction of the full spin density matrix ρ of the $t\bar{t}$ system. From ρ , all entanglement properties can be derived and quantified using the various criteria discussed above
- Future work may explore new directions... but let's keep it a secret for now:D

Thank you! :D

References I

- [1] J. S. Bell. "On the Einstein Podolsky Rosen paradox". In: *Physics Physique Fizika* 1 (3 Nov. 1964), pp. 195-200. DOI: 10.1103/PhysicsPhysiqueFizika.1.195. URL: https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195.
- [2] Asher Peres. "Separability Criterion for Density Matrices". In: Physical Review Letters 77.8 (Aug. 1996), pp. 1413—1415. ISSN: 1079-7114. DOI: 10.1103/physrevlett.77.1413. URL: http://dx.doi.org/10.1103/PhysRevLett.77.1413.
- [3] Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. "Separability of mixed states: necessary and sufficient conditions". In: *Physics Letters A* 223.1–2 (Nov. 1996), pp. 1–8. ISSN: 0375-9601. DOI: 10.1016/s0375-9601(96)00706-2. URL: http://dx.doi.org/10.1016/S0375-9601(96)00706-2.

- [4] M. Tanabashi et al. "Review of Particle Physics". In: Phys. Rev. D 98 (3 Aug. 2018), p. 030001. DOI: 10.1103/PhysRevD.98.030001. URL: https://link.aps.org/doi/10.1103/PhysRevD.98.030001.
- [5] W. Bernreuther, M. Flesch, and P. Haberl. "Signatures of Higgs bosons in the top quark decay channel at hadron colliders". In: *Phys. Rev. D* 58 (11 Nov. 1998), p. 114031. DOI: 10.1103/PhysRevD.58.114031. URL: https://link.aps.org/doi/10.1103/PhysRevD.58.114031.
- [6] ATLAS. "Observation of quantum entanglement with top quarks at the ATLAS detector". In: Nature 633.8030 (Sept. 2024), pp. 542–547. ISSN: 1476-4687. DOI: 10.1038/s41586-024-07824-z. URL: http://dx.doi.org/10.1038/s41586-024-07824-z.

[7] Yoav Afik and Juan Ramón Muñoz de Nova. "Entanglement and quantum tomography with top quarks at the LHC". In: *The European Physical Journal Plus* 136.9 (Sept. 2021). ISSN: 2190-5444. DOI: 10.1140/epjp/s13360-021-01902-1. URL: http://dx.doi.org/10.1140/epjp/s13360-021-01902-1.