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Entanglement

• Entanglement: inseparable nature of states describing physical
systems yielding nonlocal yet relativistically consistent
correlations

• For bi-partite systems, separable states can always be written
as

ρ =
∑
i ,j

pij |ψ(A)
i ⟩⟨ψ(A)

i | ⊗ |ψ(B)
j ⟩⟨ψ(B)

j |

with pij ≥ 0 and
∑

ij pij = 1, providing "classical"
interpretation

• States not in this form are called entangled or non-separable
• The structure of these correlations allows distinguishing local

from nonlocal, as stated by Bell’s theorem[1]
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Identifying/Quantifying Entanglement

• For bi-partite systems, such as H = C2 ⊗ C2 or H = C2 ⊗ C3,
Peres-Horodecki criterion gives necessary and sufficient
conditions such that a state is entangled[2, 3]

• For multi-partite systems, there are no general criteria yet but
one can make use of entanglement witness that quantify the
amount of entanglement

• In general, for bi-partite systems one can use
1. von Neumann entropy

S[ρ] = −Tr(ρA log(ρA)) = −Tr(ρB log(ρB)) where
ρA,B = TrB,Aρ

2. concurrence C [ρ] = max(0, λ1 − λ2 − λ3 − λ4) ∈ [0, 1], where
λi are the eigenvalues, in decreasing order, of the hermitian
matrix R =

√√
ρρ̃

√
ρ with ρ̃ = σ

(A)
2 ⊗ σ

(B)
2 ρ∗σ

(A)
2 ⊗ σ

(B)
2

• ...what is the fate of entanglement under the action of a
Lorentz transformation?
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Two-Qubits Density Matrix

• The general form of ρ ∈ H = H(A)
2 ⊗ H(B)

2 , with H2 ≡ C2

representing a single spin 1/2 particle, is

ρ = 1
4

(
I4+

∑
i

B+
i σ

(A)
i ⊗I2+I2⊗

∑
i

B−
i σ

(B)
i +

∑
i ,j

Cijσ
(A)
i ⊗σ(B)

j
)

where i , j = 1, 2, 3 and In representing the n × n identity
matrix

• Given an observable Ô, its expectation value is ⟨Ô⟩ = Tr[ρÔ]
• B± and Cij will be functions of the parameters describing the

kinematics, the Mandelstam variable
√

s of the process and
the scattering angle θ

• By measuring these 15 (or less, by using symmetries)
expectation values, one can experimentally reconstruct the
state −→ quantum tomography
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tt̄ production channels

• At the LHC energies, tt̄ pair arises from pp collisions,
summarized by the processes gg → tt̄ (≈ 90% at√

s = 13 TeV) and qq̄ → tt̄. At the leading order

• Why tt̄? Top quarks have a lifetime (∼ 10−25s) shorter than
the time scale for hadronisation (∼ 10−23s) and spin
decorrelation (∼ 10−21s)[4]

• tt̄ pairs follow the chains[4] tt̄ →W +b W −b̄ →
A) qq̄′b q′′q̄′′′b̄ (45.7%)
B) qq̄′b l−ν̄l b̄ + l+νlbq′′q̄′′′b̄ (43.8%)
C) l+νlb l−ν̄l b̄ (10.5%)
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What to measure

• Leptons carry almost all the spin information of their parent
top quarks −→ this is the only channel considered

• The normalized differential cross-section of the process is [5]

1
σ

dσ
dΩ+dΩ− = 1 + B+ · q+ − B− · q− − q+ · C · q−

(4π)2

• From the kinematic reconstruction of each event, one can
obtain the quantities B± and Cij , reconstruct the state and
then calculate, for e.g., the concurrence C [ρ]

• Or, equivalently, one can experimentally measure the quantity
D defined as [6] D = −3⟨cosφ⟩, with

1
σ

dσ
d cosφ = 1

2

(
1 − D cosφ

)
where φ is the angle between the lepton directions in each one
of the parent t and t̄ rest frames
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Polarizations B±, Correlation matrix Cij ...which
one?

• There is a simple relation between D and Cij ...that is,

D = Tr[Cij ]
3

• From the Peres - Horodecki criterion, one derives the condition

Tr[Cij ] < −1,

that is equivalent to D < −1
3

• The concurrence C [ρ] can also be computed and it is given by

C [ρ] = 1
2max

(
− 1 − 3D, 0)

Lucio De Simone Probing entanglement via tt̄ production at LHC 8 of 19



Data

Using the data recorded during Run 2 at the LHC, with a centre of
mass energy of

√
s = 13 TeV with an integrated luminosity of

140 fb−1
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State Tomography

By reconstructing the state with experimental data, one reproduces
the concurrence [7]
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Atlas Detector

Atlas detector is made of 4 main parts (see the figure below): Inner
detector, Calorimeter, Magnet System and Muon Spectrometer
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Inner Detector

• The Inner Detector measures the direction, momentum, and
charge of electrically-charged particles

• It reconstructs the tracks of charged particles from hits in the
silicon pixel, microstrip, and straw-tube layers. The curvature
of their tracks in the 2 T magnetic field is used to find the
transverse momentum and charge

• Trivially... it takes the hits (ri , ϕi , zi), reconstructs r(ϕ) = R
and z(ϕ) = R cot θ · ϕ where θ is the angle with the z-axis.
From R, we estimate pT (transverse momentum), while from
θ we estimate pz = pT cot θ. Usually, experimentalists use the
pseudo-rapidity η = − ln tan(θ/2)
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Calorimeter

• The calorimeter measures particle energy through ionization
and radiative processes such as bremsstrahlung and pair
production, which together produce the characteristic
electromagnetic or hadronic showers in dense absorber
materials

• Typically, electrons, photons, and hadrons lose all their energy
inside the calorimeters

• For muons, bremsstrahlung is negligible. Radiative losses scale
as −dE/dx ∝ E/m2, so

(dE/dx)µ

(dE/dx)e ≃
( me

mµ

)2
∼ 10−5
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Muon Spectrometer

• Located outside the calorimeters, the muon spectrometer
measures the momentum of muons that escape the inner
detector.

• Based on the same principles as the inner detector, it
reconstructs their curved trajectories in a large toroidal
magnetic field (3.5T)

• The Muon Spectrometer constitutes the outermost layer of
the detector. Anyway, neutrinos cannot be detected directly,
their presence is inferred from the missing momentum among
detected particles
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Conclusions and Outlook

• The study of spin correlations in tt̄ production establishes a
direct link between quantum information and high energy
physics, allowing the exploration of quantum entanglement in
this high energy regime

• The top quark is an ideal probe: it decays before hadronizing,
so its spin information is preserved and transferred to its
decay products

• The quantum state tomography is a fundamental tool, as it
allows the reconstruction of the full spin density matrix ρ of
the tt̄ system. From ρ, all entanglement properties can be
derived and quantified using the various criteria discussed
above

• Future work may explore new directions... but let’s keep it a
secret for now :D
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Well...Adios.

Thank you! :D

Lucio De Simone Probing entanglement via tt̄ production at LHC 16 of 19



References I

[1] J. S. Bell. “On the Einstein Podolsky Rosen paradox”. In: Physics Physique
Fizika 1 (3 Nov. 1964), pp. 195–200. doi:
10.1103/PhysicsPhysiqueFizika.1.195. url:
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195.

[2] Asher Peres. “Separability Criterion for Density Matrices”. In: Physical Review
Letters 77.8 (Aug. 1996), pp. 1413–1415. issn: 1079-7114. doi:
10.1103/physrevlett.77.1413. url:
http://dx.doi.org/10.1103/PhysRevLett.77.1413.

[3] Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. “Separability of
mixed states: necessary and sufficient conditions”. In: Physics Letters A 223.1–2
(Nov. 1996), pp. 1–8. issn: 0375-9601. doi: 10.1016/s0375-9601(96)00706-2.
url: http://dx.doi.org/10.1016/S0375-9601(96)00706-2.

Lucio De Simone Probing entanglement via tt̄ production at LHC 17 of 19

https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/physrevlett.77.1413
http://dx.doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1016/s0375-9601(96)00706-2
http://dx.doi.org/10.1016/S0375-9601(96)00706-2


References II

[4] M. Tanabashi et al. “Review of Particle Physics”. In: Phys. Rev. D 98 (3 Aug.
2018), p. 030001. doi: 10.1103/PhysRevD.98.030001. url:
https://link.aps.org/doi/10.1103/PhysRevD.98.030001.

[5] W. Bernreuther, M. Flesch, and P. Haberl. “Signatures of Higgs bosons in the
top quark decay channel at hadron colliders”. In: Phys. Rev. D 58 (11 Nov.
1998), p. 114031. doi: 10.1103/PhysRevD.58.114031. url:
https://link.aps.org/doi/10.1103/PhysRevD.58.114031.

[6] ATLAS. “Observation of quantum entanglement with top quarks at the ATLAS
detector”. In: Nature 633.8030 (Sept. 2024), pp. 542–547. issn: 1476-4687.
doi: 10.1038/s41586-024-07824-z. url:
http://dx.doi.org/10.1038/s41586-024-07824-z.

Lucio De Simone Probing entanglement via tt̄ production at LHC 18 of 19

https://doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.58.114031
https://link.aps.org/doi/10.1103/PhysRevD.58.114031
https://doi.org/10.1038/s41586-024-07824-z
http://dx.doi.org/10.1038/s41586-024-07824-z


References III

[7] Yoav Afik and Juan Ramón Muñoz de Nova. “Entanglement and quantum
tomography with top quarks at the LHC”. In: The European Physical Journal
Plus 136.9 (Sept. 2021). issn: 2190-5444. doi:
10.1140/epjp/s13360-021-01902-1. url:
http://dx.doi.org/10.1140/epjp/s13360-021-01902-1.

Lucio De Simone Probing entanglement via tt̄ production at LHC 19 of 19

https://doi.org/10.1140/epjp/s13360-021-01902-1
http://dx.doi.org/10.1140/epjp/s13360-021-01902-1

	Entanglement
	References

