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“What if  the same tools 

we use to study the 

universe could help us 

understand the digital 

world?”



Physics

Scientific 
Motivation

Jet Classification

Top Quark vs QCD



JET 

CLASSIFICATION

Jet classification—distinguishing 

top quark jets from QCD 

background—is fundamentally a 

problem of statistical inference, 

where each jet image represents a 

stochastic observation and the 

model estimates class 

probabilities via likelihood-based 

reasoning.



TOP QUARK

• The top quark is the heaviest known elementary 
particle in the Standard Model, with a mass of 
approximately 173 GeV/c2. 

• It carries an electric charge of +2/3e, has spin 1/2, 
and interacts via the strong, electromagnetic, 
and weak forces.

• It has an extremely short lifetime (~5 × 10⁻²⁵ s)

• Main decay channel:
t (top quark)→W boson + b-quark → W boson 

decays into leptons or quarks → forms a jet.

• In high-energy collisions (e.g. HL-LHC), top quarks 
are often highly boosted meaning their decay 
products are collimated into a single jet.

See Appendix - Boosted Top Quark



QCD BACKGROUND JETS

• QCD stands for Quantum Chromodynamics, the theory describing the 

strong force that binds quarks and gluons.
See Appendix - Glucons

• When high-energy collide (e.g. at the LHC), their constituent quarks and 

gluons interact and fragment. 

• These fragments hadronize—they form color-neutral particles (hadrons) 

that travel in roughly the same direction, creating a jet.

See Appendix - Hadronize See Appendix - Color-neutral Particles

• Jets are ubiquitous in collider experiments and form a large part of  the 

background noise when searching for more exotic signals (like top quark 

decays or new particles).

Accurate top-tagging reduces false positives, improving the purity and 

reliability of experimental results.

• These jets can resemble QCD background jets → challenging classification 

task.

• This leads to better statistical significance in measurements and 

discoveries.



SCIENTIFIC MOTIVATION

In high-energy collisions (e.g., at the LHC), jets are produced as collimated 
sprays of particles originating from quarks and gluons.

Identifying the origin of a jet—whether 
from a top quark decay or from QCD 
background—is crucial for:

Studying top quark production

Searching for new physics (e.g. heavy resonances decaying into top 
quarks)

Improving signal-to-background ratio in collider analyses



TOP-TAGGING

Top-tagging is a technique used in particle physics to identify jets 
originating from the decay of top quarks, especially when the top 
quark is highly boosted—meaning it has high momentum and its 
decay products are tightly collimated into a single jet: jet 
classification is a statistical inference problem

• Top-tagging is a benchmark task for testing new .machine 
learning architectures (CNNs, QCNNs,GNNs) (*)

• It provides a real-world application of statistical inference, 
where models estimate using likelihood-based methods.

(*) CNNs: Convolutional Neural Networks

QCNN: Quantum: Convolutional Neural Networks

GNNs: Graph Neural Networks

• A proton-proton collision at the LHC

• The production of a top quark

• Its decay into three quarks (b, q¹, q²) forming 

a jet

• A contour highlighting the jet and 

suggesting the application of top-tagging 

techniques



Neural Network
QNN vs CNN 

Statistics

Inference



See Appendix -See Appendix - Model



From: Statistical Treatment and Analysis of the Data by Annovi



See Appendix - Likelihood

From: Statistical Treatment and Analysis of the Data by Annovi

See Appendix - MLE vs Bayesian

13. MLE vs Bayesian: Key Distinction#13. MLE vs Bayesian: Key Distinction
13. MLE vs Bayesian: Key Distinction#13. MLE vs Bayesian: Key Distinction
13. MLE vs Bayesian: Key Distinction#13. MLE vs Bayesian: Key Distinction
13. MLE vs Bayesian: Key Distinction#http://625,13,MLE vs Bayesian: Key Distinction


From: Statistical Treatment and Analysis of the Data by Annovi

See Appendix - Wilks’ theorem

111. Wilks’ theorem#111. Wilks’ theorem
111. Wilks’ theorem#111. Wilks’ theorem
111. Wilks’ theorem#http://517,111,Wilks’ theorem


TOP-QUARK 
TAGGING: STATISTICS 
INFERENCE

In top-quark tagging, we don’t observe the top quark directly, but only the 
products of its decay (b-quark, W boson → leptons, neutrinos, jets). 

Therefore:

• The observables (energy, momentum, angular distributions) are random 
variables: jet features are not fixed—they vary across events:

o Each collision is governed by quantum and detector-level 
uncertainties.

o Jet formation involves stochastic processes: parton showering, 
hadronization, detector response.

o Therefore, observables are samples from a stochastic process.

See Appendix - Definition of Stochastic Process

• The jets we observe are realizations of a stochastic process.

• The dataset (e.g., JetNet) is a sample from a theoretical population of 
events. See Appendix - JetNet Datasets

• The model (CNN, QCNN, GNN) performs Statistical Frequentist Inference: 
estimating the probability that a given jet is of top-quark or QCD origin.



DEFINITION OF CNN

A Convolutional Neural Network (CNN) is a type of  

machine learning architecture widely used in image 

classification tasks. Its core mechanism involves applying 

filters—also known as convolutional kernels—that scan 

across input data (typically images) to detect patterns or 

features. These filters perform localized operations by 

multiplying pixel values with corresponding weights, 

enabling the network to identify relevant structures in the 

image.



MINIMAL CLASSICAL CNN 
ARCHITECTURE

• Develop a classifier for jet images (top vs QCD) 

using a classical convolutional neural network 

(CNN). 

• This serves as a baseline (classical benchmark) to

• Evaluate whether QCNNs offer advantages in 

terms of  accuracy, robustness, and parameter 

efficiency.

• This pipeline is intentionally kept simple to match 

the QCNN pipile

• parameter count of  the QCNN setups, ensuring a 

fair comparison.
See Appendix - Classic CNN - Purpose in the Study

Layer Function

Conv2D
Extracts spatial features from 

jet images.

MaxPooling
Reduces dimensionality while 

preserving key features.

Flatten
Converts 2D feature maps into 

a 1D vector.

Dense ×2

Performs classification into 

top-quark vs QCD jet 

categories.

Activation 

Functions

ReLU, Sigmoid, or Tanh 

depending on the loss 

function used.



QCNN 

PIPELINE

Stage Description

Jet Image
Classical input image representing energy 

distribution of  jet constituents.

Encoding Layer
Converts classical image pixels into quantum 

states.

Convolution 

Layer

Applies quantum gates to pairs of qubits to 

extract spatial features. Tested circuits: SO(4) 

and SU(4).

Pooling Layer
Reduces the number of  qubits by half  using 

CNOT and rotation gates.

Measurement 

Layer

Measures the final qubit using Pauli-Z to 

produce a prediction.

Output Prediction: top-quark jet or QCD jet.

See Appendix - Quantum Pipeline details



STATISTICAL VALIDATION OF QCNN PERFORMANCE

• The QCNN with SO(4) and HEE1 encoding achieved: See Appendix - QCNN vs CNN - See Appendix - SO(4) & HEE1

Accuracy=99.22%±0.11%

The classical CNN, with matched parameter count, achieved:

Accuracy=94.76%±2.17%

Evaluate whether QCNNs offer advantages in terms of accuracy, robustness, and parameter efficiency

These values represent the empirical frequency of correct classifications → exactly what your binomial model 

describes - Accuracy can be treated as MLE (p^) in a binomial model - See Appendix - Accuracy 

if you treat the QCNN as a classifier and the test set as a sample, then:

• Each classification is a trial.

• The number of correct predictions follows a binomial distribution.

• The confidence interval computed via Wilks provides a rigorous measure of uncertainty on the model’s efficiency.

20. QCNN vs CNN#20. QCNN vs CNN
20. QCNN vs CNN#20. QCNN vs CNN
20. QCNN vs CNN#20. QCNN vs CNN
21. SO(4) & HEE1 = Hardware-Efficient Encoding (1 layer)#21. SO(4) & HEE1 = Hardware-Efficient Encoding (1 layer)
21. SO(4) & HEE1 = Hardware-Efficient Encoding (1 layer)#21. SO(4) & HEE1 = Hardware-Efficient Encoding (1 layer)
21. SO(4) & HEE1 = Hardware-Efficient Encoding (1 layer)#21. SO(4) & HEE1 = Hardware-Efficient Encoding (1 layer)


DEFINITIONS IN STATISTICAL INFERENCE

Observables

• The number of  trials N=1000 and the number of observed successes K=960 are the 

observables. They represent the empirical evidence used to infer the underlying probability p.

Parameter

• The parameter is the success probability p∈(0,1).

• It governs the binomial distribution and is the quantity we aim to estimate using the data.



STATISTICAL INFERENCE 
PROBLEM: PIPELINE
Estimate the binomial success probability p using MLE, 

analyze the likelihood function, and construct a 

confidence interval using Wilks’ theorem. This study 

adopts a frequentist approach.

See Appendix - Wilks’theorem

Step Purpose

1

Binomial Model: Define the 

parameters

2

Compute the Maximum 

Likelihood Estimate (MLE)

3

Likelihood: A Function of the 

Parameter L(p)

4
Likelihood Curve and MLE 

Visualization

5
Compute and visualize the 

LLR (log-likelihood ratio)

6
Solve for uncertainty  intervals

bounds

7 Physical Interpretation

111. Wilks’ theorem#111. Wilks’ theorem
111. Wilks’ theorem#111. Wilks’ theorem
111. Wilks’ theorem#111. Wilks’ theorem


BINOMIAL MODEL: DEFINE THE PARAMETERS

We assume each trial has a probability p of success. The 

binomial model gives the probability of observing K successes 

out of N trials:

These are the inputs to your binomial model. You observed 

960 successes out of 1000 trials.

N = 1000 # total number of trials

K = 960 # number of observed successes



COMPUTE THE MAXIMUM LIKELIHOOD ESTIMATE (MLE)

• The maximum likelihood estimate (MLE) for the binomial success probability is simply the 
observed proportion of  successes (Analytical Calculation):

p^=960/1000=0.96

Define the range of p values to explore:

• 0.9: lower bound of the interval

• 1.0: upper bound

• 500: number of  points in the interval. This creates a fine grid of  500 values between 0.9 and 1.0 to 
evaluate the likelihood function.

See Appendix - Analytical Calculation 
See Appendix - Numerical Calculation 
See Appendix - Code Compute (MLE)



LIKELIHOOD: A FUNCTION OF THE PARAMETER L(P)
The likelihood is the binomial formula viewed as a function of  p, with N=1000 and K=960 fixed:

This function L(p) tells us how plausible different values of p are, given the observed data. For each value of  p, 

compute the probability of  observing exactly K=960 successes out of N=1000 trials. This is the likelihood function 

L(p).

The maximum likelihood estimate (MLE) is the value of  p that maximizes this function:

p^=960/1000=0.96

So:

• Likelihood is a mathematical tool.

• It’s a function of the parameter p.

• It tells you which values of  p best explain the observed data.  See Appendix - Code Likelihood 



LIKELIHOOD CURVE AND MLE VISUALIZATION

Plot the likelihood curve and highlight the 

MLE Mark the MLE p^=0.96 with a 

vertical red dashed line.

• The peak of the curve corresponds to p^

• Visual intuition: values of p near the 

peak are more compatible with the data.

See Appendix - Code - Plot the likelihood function



COMPUTE THE LOG-LIKELIHOOD RATIO (I)
In likelihood-based inference, we often want to compare how well different values of  a parameter explain the observed 

data. The Wilks statistic provides a way to quantify this comparison using the log-likelihood ratio.

Let’s say:

• L(p) is the likelihood of a parameter value p

• L(p^) is the maximum likelihood, i.e. the likelihood at the best-fit value p^

The Wilks statistic is defined as LLR(p):

• Likelihood comparison: It compares the likelihood of any value p to the maximum likelihood at p^.

• If p=p^, then L(p)=L(p^) and LLR = 0 → perfect fit.

• Penalty for deviation: As p moves away from p^, the likelihood decreases, and the LLR increases. This ref lects how 

incompatible that value of  p is with the observed data.             

See Appendix - Definition LLR(p)



COMPUTE THE LOG-LIKELIHOOD RATIO (II)
Under regular conditions and large sample sizes, Wilks’ theorem tells us that this statistic follows a chi-square 

distribution.

• This allows us to define confidence intervals without needing to simulate pseudo-experiments.

• For one parameter:

• A value of  1 corresponds to a 1σ

• A value of  4 corresponds to a 2σ

See Appendix - Code - Compute the log-likelihood ratio



VISUALIZE LOG-
LIKELIHOOD RATIO

• It quantifies the uncertainty around the 

estimate via Wilks’ Theorem

• According to Wilks’ theorem, the LLR statistic 

follows a chi-square distribution with 1 degree 

of freedom (since p is a single parameter).

• This allows us to define confidence intervals 

without simulations:

LLR = 1 → (1σ)

LLR = 4 → (2σ)

• The uncertainty includes all values of  p for 

which the LLR is below the threshold.

• See Appendix - Code Log-likelihood ratio

See Appendix - Define the log-likelihood ratio function



VISUALIZE THE 
UNCERTAINTY
• Display the Uncertainty interval 

around the estimate p^=0.96:

[0.9535,0.9659]

• Visual meaning: The 
Uncertainty interval includes all 
values of p for which the LLR is below 
the threshold. It’s the region where 
the likelihood is “not significantly 
worse” than the maximum.

• All values of p for which the LLR is 
below 1 are considered statistically 
compatible with the data at the 1σ
level

• See Appendix - Code - Find the 1σ
confidence interval



CONCLUSIONS & PHYSICAL IMPACT

The log-likelihood ratio (LLR) compares how well different values of  the parameter p explain the observed data.

• It is zero at the maximum likelihood estimate p^=0.96, meaning that this value fits the data best.

• As p moves away from p^, the likelihood decreases, and the LLR increases — this reflects decreasing compatibility

with the data.

Confidence Interval via Wilks’ Theorem

• According to Wilks’ theorem, the LLR statistic follows a chi-square distribution with 1 degree of  freedom (since p is a 

single parameter).

• chi-square distribution is valid asymptotically—that is, under conditions of  large sample size and regularity

• This allows us to define confidence intervals without simulations:

• LLR = 1 → (1σ) See Appendixc 1σ interval – Statistical Meaning

• LLR = 4 → (2σ)

32. 1σ interval – STATISTICAL MEANING#32. 1σ interval – STATISTICAL MEANING
32. 1σ interval – STATISTICAL MEANING#32. 1σ interval – STATISTICAL MEANING
32. 1σ interval – STATISTICAL MEANING#32. 1σ interval – STATISTICAL MEANING
32. 1σ interval – STATISTICAL MEANING#32. 1σ interval – STATISTICAL MEANING
32. 1σ interval – STATISTICAL MEANING#32. 1σ interval – STATISTICAL MEANING


PHYSICAL IMPACT

What it means physically

• You are not claiming that “there is a about 68% probability that p lies in this interval.” That would be a Bayesian 

interpretation.

Instead, you’re saying:

• “If  we repeated this experiment many times, and each time computed a 1σ confidence interval using the 

same method, about 68% of those intervals would contain the true value of p.”

• The true efficiency of  your QCNN classifier (its ability to correctly tag jets) is likely between 95.35% and 

96.59%, based on the observed data.

• This quantifies the uncertainty in your estimate due to statistical fluctuations in the test set.



MEAN AND VARIANCE (N=1000; K=960)

N=1000; K=960
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FROM THE UNIVERSE TO IT 
SYSTEM: WHY CORRELATING 
EVENTS IS A SHARED 
CHALLENGE



COMPLEX EVENTS, 

INTELLIGENT 

CORRELATIONS

Top Quark vs QCD :

• Jet classification—distinguishing Top Quark jets from QCD 

background using CNN/QNN through statistical inference.

IT-Sphere (e.g., banking sector):

• Detects sparse anomalies (logs, alerts, transactions) in distributed 

systems.

• Reconstructs “IT events” (incidents, fraud, cyberattacks) from 

fragmented signals.

• Uses AI to correlate logs and alerts and anticipate systemic 

impact.

Why this analogy is useful:

• Both domains deal with rare, complex, and distributed events.

• Require intelligent models to correlate signals and reconstruct 

reality.

• Statistical Inference techniques developed in physics can inspire 

advanced IT solutions.



INTELLIGENT EVENT 
CORRELATION: TOP 
QUARK AND IT BANK 
EVENTS VIA STATISTICAL 

INFERENCE

• Jet classification—

distinguishing Top Quark jets 

from QCD 

background through 

Statistical Inference.

• IT Bank Events (IT-Sphere) 

detectes IT events across 

distributed banking systems.



ITSphere

Open 
Banking

Network

Branch

ATM

Payment 

Incident

Corporate 
Banking

Internet 
Banking

IT-Sphere Overview

IT-Sphere ecosystem: 

centralized architecture 

for managing diverse 

components of a banking 

IT infrastructure. 



DEEPCORE (IT-SPHERE) 

OVERVIEW

Datacenter within the IT-Sphere 

framework is a highly integrated physical 

and virtual infrastructure that hosts 

thousands of  interconnected 

components—including servers, 

databases, network devices, security 

systems, and enterprise applications.

IT-Sphere ecosystem Datacenter



DETECTION MECHANISM

(IT-SPHERE)

• A datacenter monitoring system within the IT-Sphere 

ecosystem is a complex ensemble of  infrastructures 

and technologies designed to continuously observe, 

analyze, and interpret the operational state of  

thousands of  interconnected components—including 

servers, databases, network devices, security modules, 

and banking applications.

• It enables proactive incident response, ensures 

service continuity, real-time analytics and event 

correlation engines.



NOISE & TRIGGERING

(IT-SPHERE)

Monitoring system detects rare 

and critical events—such as 

system failures, security breaches, 

or transactional anomalies—

hidden within the vast stream of  

transactional data, often referred 

to as Log Waves. 

Log waves represent the 

background noise of  routine 

operations, making the 

identification of  meaningful alerts 

a non-trivial challenge.



EVENTS AND IT-SPHERE

• An IT-Sphere event is a discrete occurrence 

within the IT infrastructure that signifies a 

deviation from expected operational 

behavior—typically associated with a 

system anomaly, performance degradation, 

or potential security threat

• Tn the context of  datacenter monitoring, 

such an event is synthetically referred to as 

an alarm, representing a rare and 

significant signal emerging from the 

continuous flow of  transactional data, often 

described as log waves. Real-Time Manufacturing Analytics Software | PARCview

https://www.dataparc.com/parcview/
https://www.dataparc.com/parcview/
https://www.dataparc.com/parcview/


ALARM-LIKE TOP QUARK JET

CLASSIFICATION

Alarms like Top Quark Jet - Rare and significant

• Triggered by anomalous or critical system behavior

• Require precise correlation and contextual 

interpretation

• Often associated with service impact, security breach, 

or infrastructure failure

• High informational value per event

• May persist over time (active/cleared states)

See Appendix - Alarms features

See Appendix -Two Levels of Parameters in IT-Sphere

Real-Time Manufacturing Analytics Software | PARCview

https://www.dataparc.com/parcview/
https://www.dataparc.com/parcview/
https://www.dataparc.com/parcview/


LOG WAVES-LIKE QCD NOISE:
CLASSIFICATION

Log Waves like QCD Background noise

• Frequent, low-significance system logs

• Represent routine operations (e.g., access logs, 

heartbeat signals, status updates)

• Typically uncorrelated and non-critical

• Can obscure meaningful alarms if  not filtered

• Low informational value per event

• Often transient and stateless
Real-Time Manufacturing Analytics Software | 

PARCview

https://www.dataparc.com/parcview/
https://www.dataparc.com/parcview/
https://www.dataparc.com/parcview/
https://www.dataparc.com/parcview/


CORRELATION TOP QUARK JET 

AND IT-SPHERE

CLASSIFICATION

Suppress log wave noise - analogous to 

QCD Background rejection in (e.g. at the 

LHC)

Enhance signal extraction for alarms 

(Top Quark Jet events)

Model temporal and causal 
relationships to distinguish meaningful 

patterns



JET CLASSIFICATION IN PARTICLE 
PHYSICS AND EVENT DETECTION IN IT 
SYSTEMS (I)
Stochastic Observations

• In physics: each jet image is a realization of  a stochastic process governed by 
quantum and detector-level uncertainties.

• In IT: each system event (e.g., API call, transaction, log entry) is a random 
outcome influenced by network, software, and user behavior. Each minute (or 
second) is a sampling window.

Binary Classification Tasks

• In jet tagging: classify each jet as either top-quark or QCD.

• In IT monitoring: classify each event as either normal or anomalous (e.g., failure, 
breach).

Both can be modeled as Bernoulli trials, and accuracy is computed as:

Accuracy=Number of successes/Total number of trials (Volume, Performance, Error)



JET CLASSIFICATION IN PARTICLE 
PHYSICS AND EVENT DETECTION IN IT 
SYSTEMS (II)

Frequentist Inference

• In both cases, the success rate p is unknown and estimated via 

Maximum Likelihood Estimation (MLE).

• Confidence intervals around p^ are constructed using Wilks’ theorem, 

treating each classification or system event as a trial.

Signal vs Background

• In physics: distinguish rare top-quark jets from abundant QCD 

background.

• In IT: detect rare alarms within noisy log waves.

This leads to similar statistical challenges: low signal-to-noise ratio, 

false positives, and the need for robust inference.



APPENDIX



QCNN VS CNN

Accuracy: better classification with fewer errors

• The QCNN with SO(4) and HEE1 encoding achieved 99.84% accuracy using MSE, outperforming the equivalent 

CNN (90.81%).

• This is especially evident in the low-parameter regime, where CNNs tend to suffer from higher variance and poorer 

generalization.

• Why? The quantum structure can capture non-linear and global correlations between pixels (qubits) that classical filters 

struggle to model.

Robustness: resistance to barren plateaus and overfitting

• QCNNs use shallow-depth circuits, which are less prone to barren plateaus—regions in the optimization landscape 

where gradients vanish.

• Encodings like HEE1 and TPE show better trainability compared to HEE2 and CHE, which induce plateaus and 

hinder convergence.

• Moreover, the classical simulability of QCNNs makes them robust even on noisy intermediate-scale quantum (NISQ) 

devices



UNCERTAINTY INTERVAL IN 
IT MONITORING

In statistical inference, we can construct a uncertainty interval around the estimate p^ via 
Wilks’ Theorem.

You can apply the same logic to IT systems:

• Instead of assuming the observed success rate is exact, you acknowledge 
measurement uncertainty: interval for system reliability, based on observed uptime or 
error rates.

This allows IT teams to say:

“Given our data, the true success rate of the system is likely between 94.2% and 97.4%.”

Which is statistically rigorous and mirrors your physics-based inference.



RESOLUTION VS ACCURACY: KEY CONCEPTS

Accuracy

• What it is: Measures how close the average estimate is to the true value.

• Underlying question: “How correct is my estimate?”

• Example: If  the true energy is 50 GeV and the average estimate is 49 GeV, accuracy is high (low bias).

• Typical metrics: Mean Absolute Error (MAE), bias, Root Mean Square Error (RMSE).

Resolution

• What it is: Measures how tightly clustered the estimates are around the average—i.e., the spread of  errors.

• Underlying question: “How consistent are my estimates?”

• Example: If  estimates vary between 48 and 50 GeV, resolution is high; if  they vary between 40 and 60 GeV, 

resolution is low.

• Typical metrics: Inter-percentile spread (e.g., (P84−P16)/2, standard deviation.



MLE VS BAYESIAN: KEY DISTINCTION

• What does it do? It finds the parameter value that maximizes the likelihood—the value that makes 
the observed data most probable.

• It does not assume a prior distribution over the parameter.

• The parameter is fixed but unknown, and the data are considered random.

• Example in your case: You observe 960 successes out of  1000 → the MLE of p is p^=0.96.

Bayesian – Probabilistic Approach to the Parameter

• What does it do? It assumes the parameter is a random variable with a prior distribution π(p).

• It uses Bayes’ theorem to update beliefs about the parameter after observing data:

Posterior(p)∝L(p)⋅π(p)

The parameter is random, and the data are fixed.

• Example: If  you assume π(p)=Uniform(0,1), the posterior distribution is proportional to the 
likelihood—similar numerically to the frequentist result, but with a different interpretation.



1Σ INTERVAL – STATISTICAL MEANING

What does “The 1σ interval might be [0.93, 0.99]” mean?

This sentence indicates that, based on the observed data and the likelihood function, the 

estimated value of  the parameter (e.g., p) is most compatible with the data if it lies within the 

interval [0.93, 0.99].

Why is it called a “1σ interval”?

• “1σ” refers to a 68% confidence level, derived from the normal (Gaussian) distribution.

• It means that if  we repeated the experiment many times, about 68% of the time the true value 

of p would fall within that interval.

• In practice, it’s a way of saying: “We are reasonably confident that the true value of p lies 

between 0.93 and 0.99.



1Σ INTERVAL – PHYSICAL MEANING

in the context of  particle physics (e.g., top-quark jet tagging):

• If  the parameter p represents the probability that a jet is a top quark, then saying p∈[0.93,0.99] 

at the 1σ level means:

“With 68% confidence, the data are compatible with a value of  p in this interval.”

• If  a hypothesis proposes p=0.85, but the LLR compared to p^=0.96 is > 1, then that 

hypothesis is statistically less compatible with the data.



SO(4) & HEE1 = HARDWARE-EFFICIENT ENCODING (1 LAYER)

Parameter Efficiency: fewer parameters, same expressivity

• The QCNN with SO(4) uses 30 parameters, compared to 33 in the CNN, yet achieves higher accuracy.

• Dimensional Expressivity Analysis (DEA) allows the quantum circuit to eliminate redundant parameters while 

preserving its discriminative power.

• This is crucial in high-energy physics, where the number of  features (qubits/pixels) is limited and each additional 

parameter increases the risk of  overfitting.

SO(4) = Tipo di circuito di convoluzione

• SO(4) è un'unità quantistica a due qubit che realizza trasformazioni reali ortogonali.

• Ha meno parametri rispetto a SU(4), quindi è più efficiente e meno soggetta a overfitting.

• In questo contesto, SO(4) è usato per costruire i blocchi di convoluzione del QCNN.

HEE1 = Hardware-Efficient Encoding (1 layer)

• È uno dei metodi per codificare dati classici (pixel) in stati quantistici.

• HEE1 usa una sola layer di porte quantistiche, rendendolo più semplice e più trainabile rispetto a HEE2 o CHE.

• Questo encoding è stato il più performante nello studio, con accuratezza fino al 99.84%.



BINOMIAL INFERENCE: ESTIMATING ACCURACY AND UNCERTAINTY

Objective: Estimate the unknown success probability p of  a binomial process using Maximum 
Likelihood Estimation (MLE), and construct a uncertainty interval around the estimate based on the 
log-likelihood ratio and Wilks' theorem.

Context: An experiment consists of  N=1000 independent Jet trials, where K=960 successes are 
observed. The underlying success probability p is unknown and must be inferred from the data .

Goal: Understand how likelihood-based inference works in the binomial model, and how uncertainty 
intervals can be constructed using theoretical thresholds from the chi-squared distribution.

See Appendix - Why a Binomial Distribution Was Chosen
See Appendix - Definition of  Confidence Interval



MACHINE LEARNING 
AND LIKELIHOOD-
BASED INFERENCE

The machine learning models used in jet classification—such as 
CNNs, QCNNs, or GNNs, are grounded in statistical theory, 
specifically in likelihood-based inference

• The model learns to estimate the probability 
P(class|features), such as the probability that a given jet 
image belongs to a specific class, given its observable 
features.

Where:
class: This represents the jet category being predicted. In this 
study, it refers to either a top-quark jet or a QCD jet. 

So, class ∈ {top, QCD}.

features: These are the measurable properties extracted from 
the jet image. They include pixel intensities (representing energy 
fractions), spatial distributions of particles. These features serve 
as input to the CNN or QCNN models.

So, the model estimates the likelihood that a jet with certain 
features belongs to a particular class—essentially performing 
statistical inference for jet classification
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DEFINITION OF STOCHASTIC PROCESS

A stochastic process is a collection of random variables indexed by time or space, used to 

describe the evolution of a system under uncertainty. Each variable represents the state of  the 

system at a given point, and the process captures how these states change in a probabilistic 

manner.

In mathematical terms:

A stochastic process is a family of  random variables {Xt} t∈T defined on a probability space, 

where T is the index set (often representing time), and each Xt takes values in a state space S.



See Appendix - Statistical Uncertainty

See Appendix - Systematic Uncertainty

See Appendix - Model Uncertainty 
From: Statistical Treatment and Analysis of the Data by Annovi





DEFINITIONS (PROBABILITY)

From: Statistical Treatment and Analysis of the Data by Annovi
See Appendix -Probability (I)



DEFINITIONS (INFERENCE)

Definition: Statistical inference is the process 
of drawing conclusions about a population 
based on a sample of observed data.

In Particle Physics Context:

• We observe jet features (energy, 
momentum, angular distributions).

• These are treated as random variables.

• The goal is to infer the underlying class (top 
vs QCD) from these observables.

From: Statistical Treatment and Analysis of the Data by Annovi

See Appendix - Inference



GLUCONS

Definition of Gluons in QCD (Quantum Chromodynamics)

In Quantum Chromodynamics (QCD), gluons are the elementary gauge bosons that mediate 

the strong interaction between quarks. They are the force carriers of  QCD, analogous to 

photons in electromagnetism, but with a crucial difference: gluons themselves carry color 

charge, allowing them to interact with each other.

• Gluons are massless, spin-1 particles.

• There are eight types of gluons, corresponding to the eight generators of  the SU(3) color gauge 

group.

• Their self-interaction leads to key QCD phenomena such as color confinement (quarks and 

gluons are never observed in isolation) and asymptotic freedom (quarks behave as free particles 

at high energies).



• THESE FEATURES ALLOW TO 
UNDERSTAND THE THREE-
DIMENSIONAL GEOMETRY OF 
THE DETECTOR AND ANALYZE 
HOW ALARMS PROPAGATES 
DURING THE EVENT.

• TEMPORAL AND KEY 
PARAMETERS HELP 
DISTINGUISH ALARM EVENTS 
FROM BACKGROUND NOISE, 
SUCH AS WAVE LOG.

Feature Description

Entity

The object or system component that triggered the alarm (e.g., 
server, database, application). Acts as the spatial anchor of  the 

event.

time Timestamp of  the first event detection

AlertGroup

The family or category of the alarm (e.g., network, security, 
application). Provides semantic context similar to identifying the 
interaction type or topology  when high-energy collide (e.g. at the 

LHC)

AlertKey

A unique identifier or subcategory within the AlertGroup (e.g., 
“CPU overload” under “Server Health”). Refines the 

classification—like distinguishing between Top Quark Jet and 

QCD Jet.

Message
The descriptive summary of the alarm, often including 
timestamp, severity

Severity

A predefined classification of alarm gravity, indicating the 
urgency and potential impact of an event. Common levels include 

critical, major, minor, and informational, guiding the response 

priority.

Input Parameters 

of Interest



TWO LEVELS OF PARAMETERS IN IT-
SPHERE GNN RECONSTRUCTION

• The node features (Entity, Timestamp, 

Severity, Alertgroup, AlertKey, Message, 

describe the detector response.

• The target parameters (Impact, Root cause, 

Alarm vs Log waves, etc.) are the quantities 

we want to infer from that response.

• The sensor readings (position, time, 

intensity) are your inputs.

• The event that caused those signals is the 

target you want to reconstruct.

Type Examples
Role in high-

energy collide

Input Features (Node-

level)

Entity (server, database, 
application), 

Timestamp (t), Severity 
(critical, major, minor), 
AlertGroup, AlertKey, 
Message

These are the 

observable 

quantities for 

each alarm. 

Target Parameters 

(Event-level)

Event impact, Root 

cause location,

Alarm vs log 
wave classification, 

Structured vs diffuse 
alarm topology

These are the 

quantities that 

QNN aims to 

reconstruct or 

classify for each 

event (alarms vs 

log waves)



QUANTUM ENCODING LAYER

• Purpose: Converts classical image data into quantum states.

• Encodings tested:

• TPE (Tensor Product / Angle Encoding): Simple rotation-based encoding.

• HEE1 / HEE2 (Hardware-Efficient Encoding): Uses native quantum gates, one or two layers.

• CHE (Classically Hard Encoding): More complex, less trainable in this context.

• Insight: HEE1 showed best performance and trainability for this task.



QUANTUM CONVOLUTION AND POOLING

Convolution Layer

• Applies two-qubit gates to extract spatial correlations.

• Two circuit types:

• SO(4): Real-valued, fewer parameters (6 trainable).

• SU(4): Universal, more expressive (15 trainable).

• Connects neighboring qubits to simulate classical filters.

Pooling Layer

• Reduces system size by half.

• Uses CNOT + rotation gates.

• Repeated until only one qubit remains for final measurement.



MEASUREMENT AND OUTPUT

• Final qubit is measured using Pauli-Z.

• The expectation value is interpreted as the classification score.

• Output: top-quark jet or QCD jet.





ACCURACYIT: MEASURING 
QUALITY IN IT SYSTEMS

In IT environments, systems are monitored 
continuously for:

• Volumes: Number of transactions, requests, or data 
processed per minute.

• Performance: Response times, latency, throughput.

• Errors: Failed requests, exceptions, timeouts.

Each minute, the system generates a batch of 
measurements, which can be treated as a sample of 
events.

• Out of 1000 API calls in one minute, 960 return 
successful responses.

• This yields: AccuracyIT=960/1000=0.96





TEMPORAL SAMPLING = 
STATISTICAL TRIALS
In IT:

• Each minute (or second) is a sampling window.

• Each event (e.g., transaction, ping, query) is a trial.

• Over time, you build a dataset of  binary outcomes → just 

like in jet classification.

This means:

• You can apply frequentist inference to system logs.

• You can use log-likelihood ratios to compare system 

configurations.

• You can apply Wilks’ thresholds to detect statistically 

significant performance drops.



EFFICIENCY

Definition: Efficiency is the probability that a physical event (e.g., a top jet) is correctly 

identified by the selection system or classifier.

Context:

• Used in experimental physics to evaluate detector or algorithm performance.

• Refers only to the events of interest (e.g., top jets), not the entire dataset.

Example: If  the dataset contains 500 top jets and the model correctly identifies 480 of  them:

Efficiency=480/500=96%
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ACCURACY 

These two terms may sound similar, but they have distinct meanings and roles depending on the 

context — especially in jet classification and statistical inference.

Accuracy

Definition: Accuracy is the proportion of  correct classifications out of  the total number of  

classifications made.

Accuracy=Number of correct classifications/Total number of  total samples 

Context:

• Used to evaluate classification models (CNN, QCNN, etc.)

• It’s a global metric: includes both true positives and true negatives.

Example: In the QCNN paper, if  the model correctly classifies 960 out of  1000 images:

Accuracy=960/1000 -> 96%



PHYSICAL INTERPRETATION 
• In the study, the authors train quantum and classical neural networks to classify jet images as either top-quark 

jets or QCD jets, using the JetNet TopTagging dataset. Each image is labeled, and the model outputs a 

prediction: correct or incorrect.

This setup naturally leads to a binomial model:

• Each classification is a Bernoulli trial (success/failure).

• The total number of  trials is N=1000 (or a subset, e.g. test set).

• The number of correct classifications is K, which varies depending on the model and setup.

Physical Meaning in Jet Classification

• Efficiency: The MLE p^=0.96 tells us the best estimate of the model’s ability to correctly classify jets. See 

Appendix - Efficiency

• Uncertainty: The confidence interval (e.g. [0.942, 0.974]) tells us how precise that estimate is.

• Model comparison: If  a CNN has p^=0.93 with a wider interval, the QCNN may be statistically superior.

• Experimental relevance: This efficiency affects downstream physics analyses — e.g. cross-section measurements, 

background rejection, signal purity.



ACCURACY VS 

EFFICIENCY

In your binomial pipeline:

• If  you consider all classified events, you're measuring accuracy.

• If  you focus only on top jets and ask how many were correctly 

identified, you're measuring efficiency.



EXAMINER-LEVEL INSIGHT

By applying binomial inference:

• You’ve translated raw classification counts into a statistically rigorous estimate.

• You’ve used likelihood theory and Wilks’ theorem to extract uncertainty.

• You’ve interpreted the result in terms of  detector performance, model reliability, and physics 

impact.

This shows mastery of  both statistical inference and its physical application — exactly what 

your examiners are looking for.



TWO WAYS TO FIND THE 
MOST LIKELY VALUE P^

Analytical Calculation



TWO WAYS TO 
FIND THE MOST 
LIKELY VALUE P^

Numerical or Graphical Search for the 

Maximum of L(p)



WHY USE 

BOTH?

In Practice:

• You compute p^=0.96 = 

0.96 analytically

• Then you verify that the 

peak of  L(p) in the plot is at 

p=0.96

• This confirms that theory 

and practice align — a 

great way to show 

consistency between 

approaches



COMPUTE THE MAXIMUM LIKELIHOOD ESTIMATE (MLE)

Compute the Maximum Likelihood Estimate (MLE)

p_hat = K/N

print(f"MLE estimate cutro for p: {p_hat:.4f}")

Define the range of p values to explore:

p_values = np.linspace(0.9, 1.0, 500)

• 0.9: lower bound of  the interval

• 1.0: upper bound

• 500: number of  points in the interval This creates a fine grid of  500 values between 0.9 and 1.0 

to evaluate the likelihood function.



COMPUTE THE BINOMIAL LIKELIHOOD FOR EACH P

Compute the binomial likelihood for each p

likelihood = binom.pmf(K, N, p_values)

For each value of  p, compute the probability of observing exactly K=960 successes out of N=1000 trials. This is the 

likelihood function L(p)

Store results in a DataFrame:

df = pd.DataFrame({"p": p_values, "likelihood": likelihood})

Create a table with two columns: one for p, one for L(p). Useful for plotting and further analysis.



LIKELIHOOD ANALYTIC EQUATION

Since the binomial coefficient (N K) is constant with respect to p, we can ignore it when 

comparing likelihood profiles. So we work with the log-likelihood:



PLOT THE LIKELIHOOD FUNCTION

• Plot the likelihood curve

• Mark the MLE p^=0.96 with a vertical red dashed line

plt.figure(figsize=(8, 5))

plt.plot(df["p"], df["likelihood"], color="darkblue", label="L(p)")

plt.axvline(K/N, color="red", linestyle="--", label=f"MLE: p = {K/N:.3f}")



COMPUTE THE LOG-LIKELIHOOD RATIO

• L_max = binom.pmf(K, N, p_hat)

• log_likelihood_ratio = -2 * np.log(likelihood / L_max)

Where:

• L_max: maximum likelihood value at p^

• log_likelihood_ratio: measures how much worse each p is compared to the best one.

This is the Wilks statistic:



PLOT THE LOG-LIKELIHOOD RATIO

plt.figure(figsize=(8, 6))

plt.plot(df["p"], df["log_L_ratio"], color="darkgreen", label=r"$-2 \log \left( \frac{L(p)}{L(\hat{p})} 

\right)$")

plt.axhline(1, color="gray", linestyle="--", label="Wilks 1σ threshold")

plt.axhline(4, color="gray", linestyle=":", label="Wilks 2σ threshold")

plt.axvline(p_hat, color="orange", linestyle="--", label=f"MLE p = {p_hat:.3f}")

• Plot the log-likelihood ratio curve

• Add horizontal lines at 1 and 4 (Wilks thresholds for 1σ and 2σ)

• Mark the MLE again



DEFINE THE LOG-LIKELIHOOD RATIO FUNCTION

DEFINE THE LOG-LIKELIHOOD RATIO FUNCTION

• def  llr(p):

• return -2 * np.log(binom.pmf(K, N, p) / L_max)

This function computes the log-likelihood ratio for any value of  p. Needed for root-finding.

Find the 1σ confidence interval:

from scipy.optimize import brentq

p_lower = brentq(lambda p: llr(p) - 1, 0.85, p_hat)

p_upper = brentq(lambda p: llr(p) - 1, p_hat, 0.999)

• Use Brent’s method to find the values of p where the log-likelihood ratio equals 1

• These are the lower and upper bounds of  the 68% confidence interval



FIND THE 1Σ CONFIDENCE INTERVAL

• Use Brent’s method to find the values of  pp where the log-likelihood ratio equals 1

• These are the lower and upper bounds of  the 68% confidence interval

from scipy.optimize import brentq

p_lower = brentq(lambda p: llr(p) - 1, 0.85, p_hat)

p_upper = brentq(lambda p: llr(p) - 1, p_hat, 0.999)

Print and visualize the confidence interval:

print(f"Intervallo di confidenza 1σ: [{p_lower:.5f}, {p_upper:.5f}]")

plt.axvline(p_lower, color='green', linestyle='--', label=f'p_lower = {p_lower:.4f}')

• plt.axvline(p_upper, color='blue', linestyle='--', label=f'p_upper = {p_upper:.4f}')

• Display the confidence interval

• Add vertical lines at the bounds to the plot



DEFINITION LLR(P)

The formula for the log-likelihood ratio (LLR) in the 

binomial model is:

This version is often used in numerical implementations 

to avoid computing the binomial coefficient repeatedly.



LLR(P) - INTERPRETATION (I)

• Likelihood comparison: It compares the likelihood of  any value p to the maximum likelihood 

at p^. 

• If p=p^, then L(p)=L(p^) and LLR = 0 → perfect fit.

• Penalty for deviation: As p moves away from p^, the likelihood decreases, and the LLR 

increases. This reflects how incompatible that value of  p is with the observed data.

• Logarithmic scale: The log transformation makes the comparison more sensitive to small 

differences and ensures symmetry around the peak.

• Multiplying by −2: This scaling aligns the statistic with a chi-square distribution under regular 

conditions (Wilks’ theorem), allowing us to use standard thresholds for confidence intervals.



WHAT IS THE LIKELIHOOD PRINCIPLE?

You have a statistical model p(x|m), where:

• x is the observed data

• m is the unknown parameter

L(m∣x) is the likelihood function: it tells us how compatible the 

parameter m is with the data x



LLR(P) - INTERPRETATION (III)

Physical Analogy

Imagine you’re reconstructing a neutrino energy from IceCube data:

• p^ is your best estimate.

• The LLR tells you how much worse other energy values are, based on how well they explain the 

observed hits.

• The confidence interval is the range of  energies that are statistically compatible with the data.

• The LLR curve is U-shaped, centered at p^.

• The horizontal lines at LLR = 1 and LLR = 4 mark the 1σ and 2σ thresholds.

• The vertical lines at the intersection points define the confidence interval.



LLR(P) INTERPRETATION (II)

• Confidence Interval via Wilks

• Wilks’ theorem: For large samples and regular models, the LLR follows a chi-square 

distribution with degrees of  freedom equal to the number of parameters tested.

• Thresholds:

• LLR=1 → 68% confidence level (1σ)

• LLR=4 → 95% confidence level (2σ)

• Visual meaning: The confidence interval includes all values of  p for which the LLR is below the 

threshold. It’s the region where the likelihood is “not significantly worse” than the maximum.



STATISTICS
What it is: a statistic is a function of the measured observables, e.g. s(x), used to estimate unknown parameters of the 

model.

Examples:

• Sample mean xˉ

• Standard deviation

• Test statistic t(x) for hypothesis testing

Role: The statistic is the operational tool used for inference. It is not the model, not the probability—it’s a number

computed from data.

A statistic is a number computed from the data. It’s not theoretical—it’s concrete: the mean, the standard 

deviation, the value of a test statistic.

Example:

You observe 3, 4, 5, 6 photons in 4 events. The sample mean is:

xˉ=3+4+5+6/4=4.5

This is a statistic: it helps you estimate μ, but it’s not a probability.



STATISTICS 
VS PROBABILITY

• These two concepts are often confused, but they play very different roles in 
statistical inference. Let’s break it down clearly:
Key Difference

• Probability belongs to the model: it tells you how likely a data point is.

• Statistics belong to the data: they summarize or analyze what you’ve observed.



MODEL (I)

• What it is: The model is your theoretical assumption about how the data are generated. 

Formally, it’s the probability density function p(x; μ) that describes the likelihood of  observing x 

given a parameter value μ

• Examples:

• Gaussian distribution for measurements with uncertainty

• Poisson distribution for event counts

• Monte Carlo simulation model for IceCube events

• Role: The model is the bridge between theory and observables. It’s used to compute 

probabilities, likelihoods, and guide inference.



MODEL (II)

The model is your theoretical description of  how the data are generated. It’s a mathematical function that links the 
parameters of interest (like energy, direction, or signal strength) to the observables (like hits in DOMs, 
reconstructed tracks, etc.).

Formally:

• Model=p(x; μ)

• x: observed data (e.g., number of hits, timing, energy)

• μ: parameters (e.g., true energy, signal strength, neutrino type)

Example:

In IceCube, you might model the number of hits in a DOM as a Poisson distribution:

Here, the model is the Poisson function, and λ is the expected number of hits (depends on energy, geometry, etc.).



PROBABILITY (I)

What it is: Probability is a measure of  the expected frequency of  an event. In frequentist statistics, it’s 
defined as the limit of  relative frequency in repeated experiments.

Examples:

• p(x): probability of  observing x

• p(x|μ): conditional probability given the parameter (μ fixed)

• p(A∣B): conditional probability (Bayes)

Role: Probability describes uncertainty in the observables, given a model. It’s used to:

• Define distributions

• Compute p-values

• Build confidence intervals



PROBABILITY (II)

Probability is a numerical value that tells you how likely a specific outcome is, given a model.

Formally:

Probability=p(x=x0∣μ)

It’s the value you get when you plug your data x0 into the model for a given parameter μ.

Example:

Using the Poisson model above, if you expect λ=5 hits, the probability of  observing exactly 3 hits 

is:



PROBABILITY VS MODEL



LIKELIHOOD

What it is: The likelihood is the function L(μ)=p(xobs;μ), i.e. the probability of observing the actual data 

xobs given a parameter value μ. Unlike probability, here the data are fixed and the parameter varies.

Examples:

• L(μ)=∏ip(xi; μ) for independent data

• Likelihood ratio: Λ=L(μ0)/L(μ^)

• Profile likelihood: maximized over nuisance parameters

Role: Likelihood is the core of frequentist inference. It’s used to:

• Estimate parameters (maximum likelihood)

• Build tests (Neyman-Pearson, Feldman-Cousins)

• Derive confidence intervals (Wilks)





INFERENCE (I)

Inference is the broader process of  drawing conclusions about p using the likelihood and other 

statistical tools.

In this binomial example, inference might include:

• Point estimation: Using the MLE p^=0.96

• Interval estimation: Constructing a confidence interval for p e.g. using Clopper-Pearson or 

likelihood ratio methods

• Hypothesis testing: Testing H0:p=0.95 vs H1:p≠0.95

• Goodness of fit: Evaluating whether the binomial model with p=0.95 fits the data well.



INFERENCE 
(II)

• Inference is the goal.

• It uses the likelihood (and other tools) to make decisions or estimates.

• It answers questions like “What is the best estimate of  p?”, “Can we 

reject H0?”, or “How uncertain is our estimate?”
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UNCERTAINTY VS CONFIDENCE 

INTERVAL
Incertezza (Uncertainty)

Refers to the degree of  doubt or variability in a measurement or estimate. 

It’s a general concept that can be expressed in many ways: standard 

deviation, standard error, confidence intervals, credible intervals, etc.

• It quantifies how much the estimate might fluctuate due to sampling 

variability, noise, or model assumptions.

• In physics, uncertainty often refers to instrumental or statistical error.

Confidence Interval

A specific statistical tool used to express uncertainty about a parameter 

estimate.

• It defines a range of values that, with a given confidence level (e.g. 68%, 

95%), is likely to contain the true value of  the parameter.

• Based on sampling theory and often derived from likelihood ratios, 

standard errors, or bootstrap methods.



LIKELIHOOD-BASED INFERENCE

In frequentist statistics, likelihood-based inference estimates unknown parameters by evaluating the likelihood function:

𝐿(𝜃;𝑥)=P(𝑥|𝜃)

This function expresses how probable the observed data x is under different values of  the parameter θ

• The goal is to find the value of  θ that maximizes L(θ;x), i.e., the parameter that best explains the data.

Observables x are random variables sampled from a distribution

• Parameters θ are unknown quantities to be inferred

• Statistics s(x) are functions of observables used to estimate θ

• Since x is stochastic, s(x) also follows a distribution

See Appendix - Frequentist Statistics



UNCERTAINTY VS CONFIDENCE 

INTERVAL



WILKS’ THEOREM

Statement of the Theorem

Wilks’ Theorem states that, under regularity conditions and for large sample sizes, the log-likelihood ratio statistic:

converges in distribution to a chi-squared distribution with degrees of  freedom equal to the number of  parameters being tested.

Interpretation

• L(p): likelihood for a candidate parameter value

• L(p^): maximum likelihood

• Λ(p): measures how much worse p fits the data compared to p^

Λ(p) measures how much worse a candidate value p explains the data compared to the optimal value p^

• It is zero at the MLE: Λ(p^)=0

• It grows as p moves away from p^

In Wilks’ Theorem:

• Λ(p) asymptotically follows a chi-squared distribution with degrees of  freedom equal to the number of  parameters

• This allows us to define uncertainty intervals



WILKS’ THEOREM

In Wilks’ Theorem:

• Λ(p) asymptotically follows a chi-squared 

distribution with degrees of  freedom 

equal to the number of  parameters

• This allows us to define confidence 

intervals by finding values of  p such that:



WILKS’ THEOREM



WILKS’ THEOREM: REGULARITY

For the log-likelihood ratio (LLR) to follow a chi-square distribution, several regularity 

conditions must be met:

• The likelihood function must be sufficiently smooth (i.e., differentiable with respect to the 

parameter).

• The estimated parameter must lie in the interior of the parameter space (not on the 

boundary).

• The model must be identifiable: each parameter value must correspond to a unique probability 

distribution.

• The sample size must be large: the chi-square approximation is asymptotic, meaning it 

becomes accurate as N→∞.



WHY A BINOMIAL DISTRIBUTION WAS CHOSEN

The binomial distribution is appropriate because the experiment involves:

• A fixed number of  independent trials N=1000

• Each trial results in a binary outcome: success or failure

• The probability of success p is assumed to be constant across trials

This matches the definition of  a binomial process. Therefore, the number of observed successes 

K=960 follows a binomial distribution:

K∼Binomial(N,p)



DEFINITION OF 
CONFIDENCE INTERVAL
A confidence interval is a range of values for an unknown 

parameter that is believed to contain the true value with a 

specified level of confidence.

It reflects the uncertainty in the estimate due to sampling 

variability.

Example from This Exercise

• You observe K=960 successes out of  N=1000 trials

• You estimate p_hat = 0.96 using Maximum Likelihood

• Using the log-likelihood ratio and Wilks’ theorem, you find 

the values of p for which:



STRONG LIKELIHOOD PRINCIPLE

Even if x and y come from different models, 

if L(m∣x)=const⋅L(m∣y) then they should give the same inference about m.

But be careful:

• The strong principle can be violated, for example:

• When the data collection method (experimental design) affects inference

• In frequentist hypothesis testing, where the p-value depends on unobserved data (the 

“sampling space”)



CROSS-ENTROPY LOSS



MEAN SQUARED ERROR (MSE)



HINGE LOSS



CONFIDENCE INTERVAL

A confidence interval provides a range of  values that, with a certain probability (e.g., 95%), 

contains the true value of  the parameter.

Definition: For a parameter estimate θ^, a 95% confidence interval is:

θ^±z0.975⋅SE(θ^)

where z0.975 is the critical value from the standard normal distribution (≈ 1.96), and SE(θ^) is the 

standard error of  the estimator.

Interpretation: If  we repeated the experiment many times, 95% of  the intervals constructed this 

way would contain the true value of  θ



STANDARD DEVIATION

Standard deviation measures the spread of values 

around the mean. In inference, it reflects how much an 

estimate can fluctuate across different samples.

In your case: If  you train the QCNN 50 times, the 

standard deviation of  the accuracy across runs tells you 

how stable the model is.



VARIANCE

The variance of  an estimator quantifies how much the estimate θ^ varies 

around its expected value.

This formula expresses the variance of the estimator θ, which is a 

measure of how much the estimate of a parameter can fluctuate around 

its average value if the experiment were repeated many times.

Interpretation

The variance of the estimator tells you how precise the estimator is. If 

the variance is small, the estimator is stable and gives similar values 

each time. If it’s large, the estimator is unstable and can produce 

very different results depending on the data.



VARIANCE OF THE ESTIMATOR 
– TOP JET TAGGING

Application to Your Research

In the QCNN paper:

• Multiple runs (50 per setup) allow 

computing the mean and standard 

deviation of accuracy

• Confidence intervals can be constructed to 

compare performance

• Dimensional Expressivity Analysis (DEA) 

helps reduce model variance by eliminating 

redundant parameters



CONFIDENCE INTERVAL – TOP 
JET TAGGING

In the paper, each model configuration (e.g., SU(4) circuit with 
HEE encoding) is trained 50 times to assess performance. 
Let’s say you’re analyzing the classification accuracy 
across those 50 runs.

Interpretation

We are 95% confident that the true accuracy of the QCNN 
model lies between 98.09% and 98.31%.

This interval reflects the statistical uncertainty due to 
sample variability. It’s a rigorous way to report model 
performance—not just a single number, but a range that 
accounts for randomness in training and data.



UNCERTAINTY IN STATISTICAL INFERENCE: SYSTEMATIC 
UNCERTAINTY

• Refers to uncertainty in the shape of  the probability distribution P(x∣μ), where μ are model 

parameters.

• If  there are unknown nuisance parameters ν (e.g., preprocessing choices, detector effects), they 

affect the shape of  P(x∣μ,ν).

• Lack of knowledge about ν introduces systematic uncertainty in the inference process.



UNCERTAINTY IN STATISTICAL INFERENCE: MODEL UNCERTAINTY

• This concerns whether the chosen model (CNN, QCNN, encoding type, loss function) is truly 

optimal for the task.

• The paper addresses this by comparing different architectures and circuits (SO(4), SU(4), HEE, 

CHE), and applying dimensional expressivity analysis (DEA) to reduce parameter redundancy 

while preserving performance.



BOOSTED TOP QUARKS COMPLICATE THINGS

• At high energies (e.g. HL-LHC), top quarks are highly boosted→ their decay products are 

tightly packed into a single jet.

• These boosted top jets can look very similar to QCD jets in terms of  shape, energy distribution, 

and substructure.

• Sophisticated classification methods (like CNNs or QCNNs) are needed to tease apart subtle 

differences.



HIGH-ENERGY COLLISIONS (TOP QUARK E JET)

• “In high-energy collisions (e.g. HL-LHC)”→ In extremely energetic particle collisions, such as those at the Large 

Hadron Collider (LHC) or its high-luminosity upgrade (HL-LHC), particles are produced with very high energies.

• “top quarks are often highly boosted” → The top quarks generated in these collisions carry a large amount of  

momentum (relativistic boost), meaning they move very fast relative to the lab frame.

• “decay products become collimated into a single jet” → When the top quark decays (into a b-quark and a W boson), 

its decay products are so energetic that they don’t spread out in space. Instead, they travel in nearly the same direction, 

forming a tightly packed stream of  particles—a jet.



HADRONIZE

In high-energy collisions (like those at the LHC), quarks and gluons are produced with a lot of

energy. But here’s the catch: quarks and gluons can’t exist freely—they’re always confined inside 

larger particles called hadrons (like protons, neutrons, pions, etc.).

So when these energetic quarks and gluons fly out of a collision, they undergo a process called:

Hadronization — the transformation of  free quarks and gluons into bound, color-neutral 

particles (hadrons).

This happens because of  the strong force described by Quantum Chromodynamics (QCD). It’s 

like nature saying: “You can’t leave the party alone—you must form a group!”



HADRONIZE • A high-energy parton (quark or 

gluon) initiates the process.

See Appendix - Partons

• Through hadronization, it 

fragments into multiple color-

neutral hadrons.

See Appendix - Color-Neutral 

Particles 

See Appendix - What Does 

"Color-Neutral" Mean?

• These hadrons travel in roughly 

the same direction, forming a jet.



COLOR-NEUTRAL PARTICLES

What Are “Color-Neutral Particles”?

• In QCD, “color” is a property of quarks and gluons (not related to visual color). To be stable, particles must be color-

neutral—meaning their color charges cancel out. Hadrons are such combinations.

• “Color” is a quantum property of  quarks and gluons, not related to visual color.

• There are three types of color charge: red, green, and blue (and their corresponding anticolors).

• These are used to describe how particles interact via the strong force, which is mediated by gluons.

Why Do They “Travel in the Same Direction”?

When a high-energy quark or gluon is produced, it moves fast in a certain direction. As it hadronizes, it creates a spray of 

particles (hadrons) that follow roughly the same path. This spray is what we call a:

Jet — a collimated stream of  hadrons resulting from the fragmentation of  a high-energy parton.

Why Is This Important?

In experiments, we don’t see quarks directly—we detect jets. So understanding hadronization is crucial for interpreting 

what happened in the collision. And in your paper, distinguishing top-quark jets from QCD background jets depends 

on analyzing these hadronized patterns



WHAT DOES "COLOR-NEUTRAL" MEAN?

• A particle is color-neutral (or “white”) when its constituent color charges combine to cancel out.

• For example:

• A baryon (like a proton or neutron) contains three quarks: one red, one green, one blue → together they form a neutral 

combination.

• A meson contains a quark and an antiquark with opposite colors (e.g., red and anti-red) → also neutral.

• Only color-neutral combinations can exist as free, stable particles in nature.

• If  a particle had a net color charge, it would be subject to confinement—it couldn’t exist independently and would 

quickly form a neutral bound state.

• This is a consequence of  color confinement: quarks and gluons are never observed in isolation, only in bound states 

that are color-neutral.

So in essence, color-neutrality is a prerequisite for physical particles to be stable and observable. It’s a bit like electric 

neutrality in atoms—charged particles tend to combine into neutral systems to minimize energy and become stable.



PARTONS

The term parton was introduced by Richard Feynman in 1969 to describe the internal constituents 

of hadrons (like protons and neutrons) during high-energy collisions. Today, we understand that 

partons are:

• Quarks: fundamental particles with fractional electric charge and spin ½.

• Gluons: bosons that mediate the strong interaction, binding quarks together.

In practice, when a proton is accelerated and collided, it doesn’t behave like a rigid particle, but 

rather like a “bag” full of  partons that interact with each other and with partons from other 

incoming particles.



GLUONS

Gluons are the carriers of the strong interaction, one of  

the four fundamental forces of  nature. Here are their key 

properties:

Unlike photons (which mediate the electromagnetic 

force), gluons interact with each other because they 

carry color charge. This makes quantum 

chromodynamics (QCD) much more complex and 

fascinating.



GLUONS: CONNECTION TO YOUR WORK
In the context of  jet tagging and hadronic events, partons are the “seeds” from which particle 

showers (parton showers) develop, eventually forming the jets we observe. Gluons play a crucial role 

in these showers, emitting radiation and contributing to jet structure. This is exactly the kind of  

phenomenon your GNN and QCNN models aim to classify or reconstruct.

What Kind of “Radiation” Do Gluons Emit?

Unlike photons, gluons do not emit electromagnetic radiation. However, in the context of  QCD, we 

talk about gluon radiation in an analogous way to photon emission in QED:

• When an accelerated quark (or another gluon) interacts via the strong force, it can emit a gluon.

• This process is known as gluon emission or parton showering.

• It’s a form of  color radiation, not light: gluons carry color charge, so their emission alters the 

chromodynamic configuration of  the system.

In practice, it’s as if  gluons “radiate” other gluons or quarks, generating cascades of partons that 

eventually hadronize into jets.



DO GLUONS CONTRIBUTE TO JET TAGGING?

1. Jets Initiated by Gluons

• Gluons, like quarks, can initiate a parton shower that leads to the formation of a jet.

• Gluon jets tend to have:

• Wider angular spread

• Higher particle multiplicity

• More diffuse energy distribution

• These features are used to distinguish gluon jets from quark jets—a key aspect of jet tagging.

2. Role in Hadronic Events

• In high-energy collisions (like at the LHC), gluons are often the initial partons in interactions.

• Their abundance in protons (especially at low momentum fraction, i.e., low x) makes them central in hadronic 

events.

• Additionally, during hadronization, gluons combine with quarks/antiquarks to form color-neutral hadrons.



GLUONS SHAPE JET MORPHOLOGY

In your context—event reconstruction in IceCube or jet classification using GNNs/QCNNs—

understanding how gluons shape jet morphology is crucial. For example:

• A gluon jet might mimic a top jet or a QCD background jet, complicating tagging.

• The structural differences between quark and gluon jets can be learned by neural networks 

(classical or quantum) to improve discrimination.



IS THE GLUON A SIGNAL OR NOISE?

Connection to Your Work

In your case—jet classification using GNNs or QCNNs—the gluon can be:

• A signal, if  you're trying to distinguish gluon jets from other types.

• Noise, if  you're trying to isolate top-quark jets and want to suppress gluon jets that resemble 

the signal.

In short, the gluon is ambivalent: it can be either a protagonist or a distractor, depending on 

your experimental goal



OBSERVABLES ARE RANDOM VARIABLES”—WHAT IT MEANS

In high-energy physics experiments, observables like energy, momentum, and angular 

distributions are not fixed values. Instead, they behave as random variables because:

• Each collision or event is governed by quantum mechanics and probabilistic interactions.

• Even under identical initial conditions, the final state particles (and their measured properties) 

can vary.

• What we measure—like the energy of  a jet constituent or the angle between decay products—is 

a sample from a probability distribution.

we mean that:

• Their values change from event to event.

• They follow statistical distributions (e.g., Gaussian, Poisson, or more complex ones).

• We use statistical inference to extract meaningful patterns or classify events (e.g., top vs QCD 

jets).



WHAT IS A “STOCHASTIC PROCESS” IN THIS CONTEXT?

A stochastic process is the evolution of  random variables over time or space. In particle physics:

• Each proton-proton collision (e.g., at the LHC) produces different outcomes, even under 

similar initial conditions.

• Jet formation depends on quantum interactions, gluon emission, hadronization, and detector 

effects—all of  which have probabilistic components.

• Therefore, each jet is a unique realization of a process that can generate many different 

configurations.

• Statistical inference: you're trying to deduce the nature of  a jet from an observed sample.

• Probabilistic models: like neural networks that output probabilities.

• Metrics like AUC and cross-entropy: which evaluate inference over random variables.



PERFORMS STATISTICAL INFERENCE
Saying that a model “performs statistical inference” means that it is drawing probabilistic conclusions from 

observed data, rather than making deterministic predictions. Here's what that implies in your context:

What Is Statistical Inference?

Statistical inference is the process of:

• Estimating unknown parameters of a population (e.g., the probability that a jet is from a top quark)

• Testing hypotheses (e.g., is this jet more likely to be QCD or top?)

• Quantifying uncertainty in decisions (e.g., error margins, confidence intervals)

When a Model “Performs Statistical Inference”

• In your case, a model like a CNN, QCNN, or GNN:

• Receives random observables (energy, momentum, angular distributions)

• Learns to map those observables to a probability of class membership (top vs QCD)

• The output is not a binary answer, but a probability distribution—e.g., “this jet has a 92% chance of being from 

a top quark”



WHAT DOES “THIS REFLECTS A MAXIMUM LIKELIHOOD ESTIMATION 

APPROACH” MEAN?
This phrase means that the model is trying to find the parameters (or probabilities) that 

maximize the likelihood of observing the given data—in other words, the parameters that make 

the observed data most probable under the model.

What Is Maximum Likelihood Estimation (MLE)?

Definition: MLE is a statistical method that seeks the parameter values that maximize the 

likelihood function:

Where:

• xx is the observed data (e.g., jet features)

• θ are the model parameters (e.g., neural network weights)

• L(θ∣x) is the likelihood: how probable the data is given the parameters



IN  YOUR MODEL
When your QCNN or GNN minimizes cross-entropy loss, it’s actually maximizing the log-

likelihood of the correct class labels. In other words:

• The model tries to assign high probabilities to the correct classes (top, QCD) for each event.

• This is exactly what MLE does: it finds the parameters that make the observed data most 

likely.



PRECISION MEASUREMENTS
• Accurate jet classification improves measurements of  cross sections, branching ratios, and top quark properties.

• It also helps reduce systematic uncertainties in experimental analyses.

Searches for New Physics:

• Many BSM models predict top-rich final states.

• Efficient top tagging allows physicists to isolate rare events that could hint at new particles or interactions.

The paper explores whether Quantum CNNs can outperform classical CNNs in this classification task—especially in 

regimes where data is limited or the jet structure is complex.



WHY IS “WHY STATISTICS – INFERENCE” RELEVANT?

n top-quark tagging, we don’t observe the top quark directly, but only the products of its decay (b-

quark, W boson → leptons, neutrinos, jets). Therefore:

• The observables (energy, momentum, angular distributions) are random variables.

• The jets we observe are realizations of a stochastic process.

• The dataset (e.g., JetNet) is a sample from a theoretical population of events.

• The model (CNN, QCNN, GNN…) performs statistical inference: estimating the probability 

that a given jet is of  top-quark or QCD origin.



JETNET DATASETS

• Open-access datasets: Includes benchmark datasets like TopTagging, with labeled jets (e.g. top vs. QCD) and 

particle-level features.

• Preprocessing utilities: Tools to convert raw jet data into formats suitable for ML, including jet images and particle 

clouds.

• Model evaluation: Built-in support for comparing architectures like CNNs, GNNs, and QCNNs on standardized tasks.

• Integration with ML frameworks: Compatible with PyTorch and TensorFlow, making it easy to plug into existing 

workflows.

Relevance to Your Work

In the paper you uploaded, JetNet’s TopTagging dataset is used to train both classical CNNs and quantum CNNs 

(QCNNs) to distinguish top-quark jets from QCD jets. The dataset includes jets in the hadronic channel, and 

preprocessing steps (like PCA and Gram-Schmidt transformations) help reduce dimensionality and normalize jet images 

for training.

If you're working on top-tagging with GNNs or quantum models, JetNet is a great starting point for benchmarking and 

reproducibility.



SIGMA IN STATISTICS

• Sigma (σ) is the symbol for standard deviation, which 

measures how spread out the data are around the 

mean.

• Saying 1σ means you're considering a range that spans 

one standard deviation above and below the mean.

Physical interpretation of the interval: Clarify that the 

1σ interval does not mean that pp has a 68% probability 

of being in that range, but rather that the data are 

statistically compatible with those values



ACCURACYIT VS 
STATISTICAL ACCURACY

Both domains rely on binary evaluations:

• In statistical inference, each trial (e.g., jet 
classification) results in either a correct or incorrect 
prediction → modeled as a Bernoulli trial 
(success/failure).

• In IT monitoring, each system event (e.g., API call, 
database query) results in either a success or failure 
→ also a Bernoulli trial.

Accuracy as a Universal Metric:

AccuracyIT=Number of successes/Total number of tri
als

This is the same formula whether you're 
classifying jets or monitoring server uptime.
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