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JET
CLASSIFICATION

Jet classification—distinguishing
top quark jets from QCD
background—is fundamentally a
problem of statistical inference,
where each jet image represents a
stochastic observation and the
model estimates class
probabilities via likelihood-based
reasoning.




CMS Experiment at the LHC, CERN

TO P QU ARK Data recorded: 2018-Sep-03 22:13:43.484096 GMT

Run / Event / LS: 322179 / 1557467762 / 902

* The top quark is the heaviest known elementary
particle in the Standard Model, with a mass of
approximately 173 GeV/c2.

* |t carries an electric charge of +2/3e, has spin 1/2,
and interacts via the strong, electromagnetic,
and weak forces.

* |t has an extremely short lifetime (~5 x 10725 S)

* Main decay channel:
t (top quark)— W boson + b-quark — W boson
decays into leptons or quarks — forms a jet.

* |n high-energy collisions (e.g. HL-LHC), top quarks
are often highly boosted meaning their decay
products are collimated into a single jet.

See Appendix - Boosted Top Quark




QCD BACKGROUND JETS

* QCD stands for Quantum Chromodynamics, the theory describing the
strong force that binds quarks and gluons. QCD Background Jets

* When high-energy collide (e.g. at the LHC), their constituent quarks and
gluons interact and fragment.

» These fragments hadronize—they form color-neutral particles (hadrons)
that travel in roughly the same direction, creating a jet.

« Jets are ubiquitous in collider experiments and form a large part of the
background noise when searching for more exotic signals (like top quark
decays or new particles).

Accurate top-tagging reduces false positives, improving the purity and
reliability of experimental results.

* These jets can resemble QCD background jets — challenging classification
task.

» This leads to better statistical significance in measurements and
discoveries.



SCIENTIFIC MOTIVATION

In high-energy collisions (e.g., at the LHC), jets are produced as collimated
sprays of particles originating from quarks and gluons.

Identifying the origin of a jet—whether  3%dmsop uarkproduction

Searching for new physics (e.g. heavy resonances decaying into top

from a top quark decay or from QCD quarks)
b a Ckgroun d—lS cru Ci al for. Improving signal-to-background ratio in collider analyses




TOP-TAGGING

Top-tagging is a technique used in particle physics to identify jets
originating from the decay of top quarks, especially when the top
quark is highly boosted—meaning it has high momentum and its
decay products are tightly collimated into a single jet: jet
classification is a statistical inference problem

« Top-tagging is a benchmark task for testing new .machine
learning architectures (CNNs, QCNNs,GNNs) (¥

» It provides a real-world application of statistical inference,
where models estimate using likelthood-based methods.

(*) CNNs: Convolutional Neural Networks
QCNN: Quantum: Convolutional Neural Networks

GNNs: Graph Neural Networks

A proton-proton collision at the LHC

The production of a top quark

Its decay into three quarks (b, q., g:) forming
a jet

A contour highlighting the jet and
suggesting the application of top-tagging
techniques



QNN vs CNN
Neural Network Statistics

Inference




Fundamental ingredient - The model

Given some data, we need to

1. ldentify all relevant observation x (data)
2. identify all relevant unknown parameters m
3. Construct a model for both

The model:

P( data | theory )=P(x; n)

See Appendix -See Appendix - Model




Inference

In Physics there are quantities that can be measured (observables x, y, etc), and
these observables can depend somehow by parameters (M, v, etc).

The laws of physics usually determine the values of the observables (and their
evolution), given some values of the parameters.
Laws of Physics

Inference
The main goal for the inference is to get information on the parameters given

some measured observables

From: Statistical Treatment and Analysis of the Data by Annovi




Likelihood function

Model evaluated at fixed data. Essential in most Bayesian and Frequentist
inference

See Appendix - MLE vs Bayesian

- probability density function p(x|m)_of observing generic data x, given the
unobservable value of the parameter m.

« Then take actual sample of observed data xo and evaluate p(xo/m)

* The likelihood L(m) = p(xo|m) is a function of parameter m given your data

Connected to probability for observing data x for different choices of the value
of the parameter m, not the probability that m has some value given the data.

Likelihood is a complete summary of the data information relevant to the
estimate at hand. Ideally should be published as is.

See A%endix - Likelihood -

From: Statistical Treatment and Analysis of the Data by Annovi



13. MLE vs Bayesian: Key Distinction#13. MLE vs Bayesian: Key Distinction
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13. MLE vs Bayesian: Key Distinction#13. MLE vs Bayesian: Key Distinction
13. MLE vs Bayesian: Key Distinction#http://625,13,MLE vs Bayesian: Key Distinction

Wilks theorem

Asymptotically (large N), the distribution of the likelihood ratio

—2InLR(mg) = —21n PE™0)
p(z|rn)
approaches a x? distribution with # of degrees of freedom equal

to # of additional free parameters in the denominator wrt the
numerator

Samuel S. Wilks (1906-1964)

See Appendix - Wilks’ theorem

This holds independently of the shape of p(x|m) and on the value of m.

Great helps in usage of likelihood- and profile-likelihood-ratio as ordering quantities
in the construction of intervals. If the likelihood is regular enough to be in asymptotic
regime, one can avoid massive production of simulated experiments.

From: Statistical Treatment and Analysis of the Data by Annovi



111. Wilks’ theorem#111. Wilks’ theorem
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111. Wilks’ theorem#http://517,111,Wilks’ theorem

In top-quark tagging, we don’t observe the top quark directly, but only the

TO P'Q UARK products of its decay (b-quark, W boson — leptons, neutrinos, jets).
TAGGING: STATISTICS  Therefore:
IN FE RE NC E * The observables (energy, momentum, angular distributions) are random

variables: jet features are not fixed—they vary across events:

o Each collision is governed by quantum and detector-level
uncertainties.

o Jet formation involves stochastic processes: parton showering,
hadronization, detectorresponse.
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* The jets we observe are realizations of a stochastic process.

| *+ The dataset (e.g., JetNet) is a sample from a theoretical population of
events. See Appendix - JetNet Datasets

* The model (CNN, QCNN, GNN) performs Statistical Frequentist Inference:
7+ kla y £ estimating the probability that a given jetis of top-quark or QCD origin.




DEFINITION OF CNN

A Convolutional Neural Network (CNN) 1s a type of
machine learning architecture widely used in 1image
classification tasks. Its core mechanism involves applying
filters—also known as convolutional kernels—that scan
across input data (typically images) to detect patterns or
features. These filters perform localized operations by
multiplying pixel values with corresponding weights,
enabling the network to identify relevant structures in the
1mage.




MINIMAL CLASSICAL CNN
ARCHITECTURE

» Develop a classifier for jet images (top vs QCD)
using a classical convolutional neural network

(CNN).

» This serves as a baseline (classical benchmark) to

» Evaluate whether QCNNs offer advantages in
terms of accuracy, robustness, and parameter
efficiency.

» This pipeline is intentionally kept simple to match
the QCNN pipile

» parameter count of the QCNN setups, ensuring a

fair comparison.
See Appendix - Classic CNN - Purpose in the Study

Layer

Conv2D

MaxPooling

Flatten

Dense x2

Activation
Functions

Function

Extracts spatial features from
jet 1mages.

Reduces dimensionality while
preserving key features.

Converts 2D feature maps into
a 1D vector.

Performs classification into
top-quark vs QCD jet
categories.

ReLU, Sigmoid, or Tanh
depending on the loss
function used.



OQCNN
PIPELINE

Stage

Jet Image
Encoding Layer

Convolution
Layer

Pooling Layer

Measurement
Layer

Output

Description

Classical input image representing energy
distribution of jet constituents.

Converts classical image pixels into quantum
states.

Applies quantum gates to pairs of qubits to
extract spatial features. Tested circuits: SO(4)
and SU(4).

Reduces the number of qubits by half using
CNOT and rotation gates.

Measures the final qubit using Pauli-Z to
produce a prediction.

Prediction: top-quark jet or QCD jet.



STATISTICAL VALIDATION OF QCNN PERFORMANCE

e The QCNN with SO(4) and HEE1 encoding achieved: -

Accuracy=99.22%+0.11%

The classical CNN, with matched parameter count, achieved:

Accuracy=94.76%+2.17%

Evaluate whether QCNNs offer advantages in terms of accuracy, robustness, and parameter efficiency
These values represent the empirical frequency of correct classifications — exactly what your binomial model
describes - Accuracy can be treated as MLE (p”) in a binomial model -
if you treat the QCNN as a classifier and the test set as a sample, then:

* Each classificationis a trial.
 The number of correct predictions follows a binomial distribution.

* The confidence interval computed via Wilks provides a rigorous measure of uncertainty on the model’s efficiency.



20. QCNN vs CNN#20. QCNN vs CNN
20. QCNN vs CNN#20. QCNN vs CNN
20. QCNN vs CNN#20. QCNN vs CNN
21. SO(4) & HEE1 = Hardware-Efficient Encoding (1 layer)#21. SO(4) & HEE1 = Hardware-Efficient Encoding (1 layer)
21. SO(4) & HEE1 = Hardware-Efficient Encoding (1 layer)#21. SO(4) & HEE1 = Hardware-Efficient Encoding (1 layer)
21. SO(4) & HEE1 = Hardware-Efficient Encoding (1 layer)#21. SO(4) & HEE1 = Hardware-Efficient Encoding (1 layer)

DEFINITIONS IN STATISTICAL INFERENCE

Observables

* The number of trials N=1000 and the number of observed successes K=960 are the
observables. They represent the empirical evidence used to infer the underlying probability p.

Parameter
* The parameter 1s the success probability pe(0,1).

* It governs the binomial distribution and 1s the quantity we aim to estimate using the data.




STATISTICAL INFERENCE -

Binomial Model: Define the

PROBLEM: PIPELINE |

Compute the Maximum

Estimate the binomial success probability p using MLE, 2 Likelihood Estimate (MLE)

analyze the likelihood function, and construct a

confidence interval using Wilks’ theorem. This study Likelihood: A Function of the
3 Parameter L(p)

adopts a frequentist approach.

Likelihood Curve and MLE

4 Visualization

5 Compute and visualize the
LLR (log-likelihood ratio)

6 Solve for uncertainty intervals

bounds

7 Physical Interpretation



111. Wilks’ theorem#111. Wilks’ theorem
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BINOMIAL MODEL: DEFINE THE PARAMETERS

We assume each trial has a probability p of success. The
binomial model gives the probability of observing K successes
out of N trials:

Planp) = (| ) —p" "

In your case: These are the inputs to your binomial model. You observed

960 successes out of 1000 trials.
e n=1000

e k=960 )
N =1000 # total number of trials

* The modelis P(360; 1000, p) K=960 # number of observed successes




COMPUTE THE MAXIMUM LIKELIHOOD ESTIMATE (MLE)

* The maximum likelihood estimate (MLE) for the binomial success probability is simply the
observed proportion of successes (Analytical Calculation):

p"=960/1000=0.96

Define the range of p values to explore:
* 0.9: lower bound of the interval
e 1.0: upper bound

e 500: number of points in the interval. This creates a fine grid of 500 values between 0.9 and 1.0 to
evaluate the likelithood function.




LIKELIHOOD: A FUNCTION OF THE PARAMETER L(P)

The likelihood is the binomial formula viewed as a function of p, with N=1000 and K=960 fixed:

1000
L(p) = ( 560 )p%"(l -

This function L(p) tells us how plausible different values of p are, given the observed data. For each value of p,
compute the probability of observing exactly K=960 successes out of N=1000 trials. This 1s the likelthood function

L(p).
The maximum likelihood estimate (MLE) is the value of p that maximizes this function:
p*=960/1000=0.96
So:
* Likelihood is a mathematical tool.

» It’s a function of the parameter p.

It tells you which values of p best explain the observed data. See Appendix - Code Likelihood




LIKELIHOOD CURVE AND MLE VISUALIZATION

LE estimate cutro for p: ©.9600

Binomial Likelihood Function (N=1000, K=960)

Plot the likelithood curve and highlight the

|
! — LUp)
o8 i B el Ak MLE Mark the MLE p”*=0.96 with a
|
0.05 i vertical red dashed line.
|
|
g 004 i * The peak of the curve corresponds to p*
£ 003 |  Visual intuition: values of p near the
" 002 § peak are more compatible with the data.
|
0.01 i See Appendix - Code - Plot the likelihood function
0.00 i

0.90 0.92 0.94 0.96 0.98 1.00
Success probability p



COMPUTE THE LOG-LIKELIHOOD RATIO (I)

In likelihood-based inference, we often want to compare how well different values of a parameter explain the observed
data. The Wilks statistic provides a way to quantify this comparison using the log-likelihood ratio.

Let’s say:
* L(p) 1s the likelihood of a parameter value p

* L(p") is the maximum likelihood, 1.e. the likelihood at the best-fit value p*

The Wilks statistic is defined as LLR(p):

LLR(p) = — Zlog(L—(p))

L(®)

* Likelihood comparison: It compares the likelihood of any value p to the maximum likelithood at p”.
 If p=p”, then L(p)=L(p”") and LLR = 0 — perfect fit.

* Penalty for deviation: As p moves away from p”, the likelihood decreases, and the LLR increases. This reflects how

incompatible that value of p is with the observed data.
See Appendix - Definition LLR(p)




COMPUTE THE LOG-LIKELIHOOD RATIO (lI)

Under regular conditions and large sample sizes, Wilks’ theorem tells us that this statistic follows a chi-square
distribution.

» This allows us to define confidence intervals without needing to simulate pseudo-experiments.
* For one parameter:
« A value of 1 correspondsto a lo

» A value of 4 corresponds to a 20




log likelihood_ratio = -2 * np.log(likelihood / L_max)

VISUALIZE LOG- Log-Likelihood Ratio (Binomial N=1000, K=960)
LIKELIHOOD RATIO T

L(p)
=== Wilks 1o threshold
It quantifies the uncertainty around the 300 -+ Wilks 20 threshold

estimate via Wilks’ Theorem MLE p = 0.960

According to Wilks’ theorem, the LLR statistic 2307

follows a chi-square distribution with 1 degree
of freedom (since p is a single parameter).

This allows us to define confidence intervals
without simulations:

Log-likelihood ratio

LLR =1 — (lo)
LLR =4 — (20)

The uncertainty includes all values of p for
which the LLR is below the threshold.

0.90 0.92 0.94 0.96 0.98 1.00
See Appendix - Code Log-likelihood ratio Success probability p

See Appendix - Define the log-likelihood ratio function Intervallo di confidenza lo: [0.95349, 0.96589]




VISUALIZE THE Log-Likelihood Ratio (Binomial N=1000, K=960)

1 ]
UNCERTAINTY — —2log (42) | :
14 + g L(p) 1 |
* Display the Uncertainty interval === Wilks 1o threshold : |
around the estimate p*=0.96: | " Wilks 20 threshold : -
12 1 MLE p = 0.960 : !
=== p_lower = 0.9535 : :
[0.9535,0.9659] 104~ P-upper=0.9659 i :
= | :
© : :
* Visual meaning: The © ! !
. . . o 8 1 1 I
Uncertainty interval includes all 8 ! :
values of p for which the LLR is below § | :
the threshold. It’s the region where > 6 - | |
the likelihood is “not significantly 3 ! !
worse” than the maximum. ! !
R All Va[ues of p for which the LLR is e e e i. ........... l:
below 1 are considered statistically ! !
compatible with the data at the 1o 24 ! :
level [ I
0 T T T T T
* See Appendix - Code - Find the 10 0.90 0.92 0.94 0.96 0.98 1

confidence interval Success probability p




CONCLUSIONS & PHYSICAL IMPACT

The log-likelihood ratio (LLR) compares how well different values of the parameter p explain the observed data.
« It is zero at the maximum likelihood estimate p*=0.96, meaning that this value fits the data best.

* Asp moves away from p”, the likelihood decreases, and the LLR increases — this reflects decreasing compatibility
with the data.

Confidence Interval via Wilks’ Theorem

* According to Wilks’ theorem, the LLR statistic follows a chi-square distribution with 1 degree of freedom (since p is a
single parameter).

* chi-square distribution is valid asymptotically—that is, under conditions of large sample size and regularity
* This allows us to define confidence intervals without simulations:

« LLR=1—- (lo)

« LLR =4 — (20)



32. 1σ interval – STATISTICAL MEANING#32. 1σ interval – STATISTICAL MEANING
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PHYSICAL IMPACT
What it means physically

» You are not claiming that “there is a about 68% probability that p lies in this interval.” That would be a Bayesian
interpretation.

Instead, you're saying:

« “If we repeated this experiment many times, and each time computed a 1o confidence interval using the
same method, about 68% of those intervals would contain the true value of p.”

* The true efficiency of your QCNN classifier (its ability to correctly tag jets) is likely between 95.35% and
96.59%, based on the observed data.

» This quantifies the uncertainty in your estimate due to statistical fluctuations in the test set.




MEAN AND VARIANCE (N=1000; K=960)

We can calculate the sample mean and variance

mean = df.mean()[©
print(f'The ple n

The sample mean value

is 0.95
/tmp/ipython-input-25484947974py:1: FutureWarning: Series. getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be
mean = df.mean()[0]

var = df.var()[@]
print(f'The sample

The sample variance is ©.0008383500467869598
/tmp/ipython-input-1¥8 .py:1: FutureWarningg”Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be

var = df.var()[0]




Cross-Domain Analogy

IT_Sphe re IT-Sphere Events
Accuracy &IT




FROM THE UNIVERSE TO IT
SYSTEM: WHY CORRELATING
EVENTS IS A SHARED
CHALLENGE




COMPLEX EVENTS,
INTELLIGENT
CORRELATIONS

for explanation.
99¢G0> to save current selection as default region
T7able” ¥Settings " JBwort #Notes™™ 3 Feedback Trade Flow
s oo oy G :

Top Quark vs QCD :

+ Jet classification—distinguishing Top Quark jets from QCD
background using CNN/QNN through statistical inference.

IT-Sphere (e.g., banking sector):

* Detects sparse anomalies (logs, alerts, transactions) in distributed
systems.

* Reconstructs “IT events” (incidents, fraud, cyberattacks) from
fragmented signals.

» Uses Al to correlate logs and alerts and anticipate systemic
impact.

Why this analogy is useful:
* Both domains deal with rare, complex, and distributed events.

* Require intelligent models to correlate signals and reconstruct
reality.

 Statistical Inference techniques developed in physics can inspire
advanced IT solutions.




INTELLIGENT EVENT
CORRELATION: TOP
QUARK AND IT BANK
EVENTS VIA STATISTICAL

INFERENCE

oo e

» Jet classification—
distinguishing Top Quark jets
from QCD
background through
Statistical Inference.

* IT Bank Events (IT-Sphere)
detectes I'T events across
distributed banking systems.
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IT-Sphere Overview

IT-Sphere ecosystem:
centralized architecture
for managing diverse
components of a banking
IT infrastructure.




DEEPCORE (IT-SPHERE)
OVERVIEW

Datacenter within the I'T-Sphere
framework 1s a highly integrated physical
and virtual infrastructure that hosts
thousands of interconnected
components—including servers,
databases, network devices, security
systems, and enterprise applications.

T )

IT-Sphere ecosystem Datacenter




DETECTION MECHANISM
(IT-SPHERE)

» A datacenter monitoring system within the IT-Sphere
ecosystem is a complex ensemble of infrastructures
and technologies designed to continuously observe,
analyze, and interpret the operational state of
thousands of interconnected components—including
servers, databases, network devices, security modules,
and banking applications.

* It enables proactive incident response, ensures
service continuity, real-time analytics and event
correlation engines.




NOISE & TRIGGERING
(IT-SPHERE)

Monitoring system detects rare
and critical events—such as
system failures, security breaches,
or transactional anomalies—
hidden within the vast stream of
transactional data, often referred
to as Log Waves.

Log waves represent the
background noise of routine
operations, making the
identification of meaningful alerts
a non-trivial challenge.




EVENTS AND IT-SPHERE

* An IT-Sphere event is a discrete occurrence
within the IT infrastructure that signifies a
deviation from expected operational
behavior—typically associated with a
system anomaly, performance degradation,
or potential security threat

* Tn the context of datacenter monitoring,
such an event 1s synthetically referred to as
an alarm, representing a rare and
significant signal emerging from the
continuous flow of transactional data, often
described as log waves.
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JDiss Tank: Level

12126 228 2030 3

Location: | Vancouver Mill
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4 Equipment

4 Boiler

Refinery
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-
‘ Filtering

4 Unassigned Equipment
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Real-Time Manufacturing Analytics Software | PARCview



https://www.dataparc.com/parcview/
https://www.dataparc.com/parcview/
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ALARM-LIKE TOP QUARK JET
CLASSIFICATION

Alarms like Top Quark Jet - Rare and significant

* Triggered by anomalous or critical system behavior

* Require precise correlation and contextual
interpretation

* Often associated with service impact, security breach,

or infrastructure failure
* High informational value per event

* May persist over time (active/cleared states)

See Appendix - Alarms features
See Appendix -Two Levels of Parameters in I'T-Sphere

@ acme <o Production Overview
Total Production @ Fresno @ Madison © Philadelphia &
129.13 104.76 74.96 88.1 86.24 130.72
10.18 40.21 131.88 700 78.74 318

Ammaonia Preduction

355.89 2091

Urea Production

359.12 1058

Energy Usage
[Xhi) $336 ¥ $332

363.74 323

Production Cost

Real-Time Manufacturing Analvtics Software | PARCview
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LOG WAVES-LIKE QCD NOISE:
CLASSIFICATION

Log Waves like QCD Background noise
* Frequent, low-significance system logs

» Represent routine operations (e.g., access logs,
heartbeat signals, status updates)

» Typically uncorrelated and non-critical
* Can obscure meaningful alarms if not filtered
» Low informational value per event

* Often transient and stateless

149

T1_3501-PV |CO2 scrubber outlet temp
Pl_3501-PV |CO2 scrubber pressure

89

&H

Real-Time Manufacturing Analytics Software
PARCview
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CORRELATION TOP QUARK JET
AND IT-SPHERE
CLASSIFICATION

¥

@

Suppress log wave noise - analogous to
QCD Background rejection in (e.g. at the
LHC)

Enhance signal extraction for alarms
(Top Quark Jet events)

Model temporal and causal
relationships to distinguish meaningful
patterns



JET CLASSIFICATION IN PARTICLE

PHYSICS AND EVENT DETECTION IN IT
SYSTEMS (I)

Stochastic Observations

* In physics: each jet image is a realization of a stochastic process governed by
quantum and detector-level uncertainties.

* In IT: each system event (e.g., API call, transaction, log entry) is a random
outcome influenced by network, software, and user behavior. Each minute (or
second) is a sampling window.

Binary Classification Tasks
» In jet tagging: classify each jet as either top-quark or QCD.

* In IT monitoring: classify each event as either normal or anomalous (e.g., failure,
breach).

Both can be modeled as Bernoulli trials, and accuracy is computed as:

Accuracy=Number of successes/ Total number of trials (Volume, Performance, Error)
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JET CLASSIFICATION IN PARTICLE
PHYSICS AND EVENT DETECTION IN IT
SYSTEMS (Il)

Frequentist Inference

* In both cases, the success rate p is unknown and estimated via
Maximum Likelihood Estimation (MLE).

* Confidence intervals around p” are constructed using Wilks’ theorem,
treating each classification or system event as a trial.

Signal vs Background

* In physics: distinguish rare top-quark jets from abundant QCD
background.

e In IT: detect rare alarms within noisy log waves.

This leads to similar statistical challenges: low signal-to-noise ratio,
false positives, and the need for robust inference.




APPENDIX




QCNN VS CNN

Accuracy: better classification with fewer errors

 The QCNN with SO(4) and HEE1 encoding achieved 99.84% accuracy using MSE, outperforming the equivalent
CNN (90.81%).

» This is especially evident in the low-parameter regime, where CNN's tend to suffer from higher variance and poorer
generalization.

 Why? The quantum structure can capture non-linear and global correlations between pixels (qubits) that classical filters
struggle to model.

Robustness: resistance to barren plateaus and overfitting

* QCNNs use shallow-depth circuits, which are less prone to barren plateaus—regions in the optimization landscape
where gradients vanish.

* Encodings like HEE1 and TPE show better trainability compared to HEE2 and CHE, which induce plateaus and
hinder convergence.

* Moreover, the classical simulability of QCNNs makes them robust even on noisy intermediate-scale quantum (NISQ)
devices




UNCERTAINTY INTERVAL IN
IT MONITORING

In statistical inference, we can construct a uncertainty interval around the estimate p” via
Wilks’ Theorem.

You can apply the same logic to IT systems:

* Instead of assuming the observed success rate is exact, you acknowledge
measurement uncertainty: interval for system reliability, based on observed uptime or
error rates.

This allows IT teams to say:
“Given our data, the true success rate of the system is likely between 94.2% and 97.4%.”

Which is statistically rigorous and mirrors your physics-based inference.




RESOLUTION VS ACCURACY: KEY CONCEPTS

Accuracy

* What it is: Measures how close the average estimate is to the true value.

* Underlying question: “How correct 1s my estimate?”

« Example: If the true energy is 50 GeV and the average estimate is 49 GeV, accuracy 1s high (low bias).

* Typical metrics: Mean Absolute Error (MAE), bias, Root Mean Square Error (RMSE).

Resolution

 What it is: Measures how tightly clustered the estimates are around the average—i.e., the spread of errors.
* Underlying question: “How consistent are my estimates?”

« Example: If estimates vary between 48 and 50 GeV, resolution is high; if they vary between 40 and 60 GeV,
resolution is low.

» Typical metrics: Inter-percentile spread (e.g., (Ps,—P..)/2, standard deviation.




MLE VS BAYESIAN: KEY DISTINCTION

* What does it do? It finds the parameter value that maximizes the likelihood—the value that makes
the observed data most probable.

* It does not assume a prior distribution over the parameter.
* The parameter is fixed but unknown, and the data are considered random.
« Example in your case: You observe 960 successes out of 1000 — the MLE of p is p*=0.96.
Bayesian — Probabilistic Approach to the Parameter
* What does it do? It assumes the parameter is a random variable with a prior distribution n(p).
It uses Bayes’ theorem to update beliefs about the parameter after observing data:
Posterior(p)xL(p)-n(p)
The parameter is random, and the data are fixed.

« Example: If you assume n(p)=Uniform(0,1), the posterior distribution 1s proportional to the
likelihood—similar numerically to the frequentist result, but with a different interpretation.




12 INTERVAL - STATISTICAL MEANING

What does “The 1o interval might be [0.93, 0.99]”” mean?

This sentence indicates that, based on the observed data and the likelithood function, the
estimated value of the parameter (e.g., p) 1s most compatible with the data if it lies within the
interval [0.93, 0.99].

Why is it called a “10o interval”’?
« “lo” refers to a 68% confidence level, derived from the normal (Gaussian) distribution.

It means that if we repeated the experiment many times, about 68% of the time the true value
of p would fall within that interval.

 In practice, it’s a way of saying: “We are reasonably confident that the true value of p lies
between 0.93 and 0.99.




12 INTERVAL - PHYSICAL MEANING

in the context of particle physics (e.g., top-quark jet tagging):

* If the parameter p represents the probability that a jet 1s a top quark, then saying p€[0.93,0.99]
at the 1o level means:

“With 68% confidence, the data are compatible with a value of p in this interval.”

* If a hypothesis proposes p=0.85, but the LLR compared to p*=0.96 is > 1, then that
hypothesis is statistically less compatible with the data.




SO(4) & HEE1 = HARDWARE-EFFICIENT ENCODING (1 LAYER)

Parameter Efficiency: fewer parameters, same expressivity
 The QCNN with SO(4) uses 30 parameters, compared to 33 in the CNN, yet achieves higher accuracy.

* Dimensional Expressivity Analysis (DEA) allows the quantum circuit to eliminate redundant parameters while
preserving its discriminative power.

* This is crucial in high-energy physics, where the number of features (qubits/pixels) is limited and each additional
parameter increases the risk of overfitting.

SO(4) = Tipo di circuito di convoluzione

* SO(4) ¢ un'unita quantistica a due qubit che realizza trasformazioni reali ortogonali.

* Ha meno parametri rispetto a SU(4), quindi ¢ piu efficiente e meno soggetta a overfitting.

* In questo contesto, SO(4) ¢ usato per costruire 1 blocchi di convoluzione del QCNN.

HEE1 = Hardware-Efficient Encoding (1 layer)

« E uno dei metodi per codificare dati classici (pixel) in stati quantistici.

 HEEI usa una sola layer di porte quantistiche, rendendolo pitt semplice e piu trainabile rispetto a HEE2 o CHE.

* (Questo encoding é stato il piu performante nello studio, con accuratezza fino al 99.84%.




BINOMIAL INFERENCE: ESTIMATING ACCURACY AND UNCERTAINTY

Objective: Estimate the unknown success probability p of a binomial process using Maximum
Likelihood Estimation (MLE), and construct a uncertainty interval around the estimate based on the
log-likelihood ratio and Wilks' theorem.

Context: An experiment consists of N=1000 independent Jet trials, where K=960 successes are
observed. The underlying success probability p is unknown and must be inferred from the data.

Goal: Understand how likelihood-based inference works in the binomial model, and how uncertainty
intervals can be constructed using theoretical thresholds from the chi-squared distribution.




MACHINE LEARNING

AND LIKELIHOOD-
BASED INFERENCE

Inference Type

Frequentist

Discriminative
ML

Description

Estimates probabilities
from empirical
frequencies; no priors
involved.

Learns P(y | x):
conditional probability of
class given features.

The machine learning models used in jet classification—such as
CNNs, QCNNs, or GNNSs, are grounded in statistical theory,
specifically in likelihood-based inference

* The model learns to estimate the probability
P(class|features), such as the probability that a given jet
image belongs to a specific class, given its observable
features.

Where:
class: This represents the jet category being predicted. In this
study, it refers to either a top-quark jet or a QCD jet.

So, class € {top, QCD}.

features: These are the measurable properties extracted from
the jetimage. They include pixel intensities (representing energy
fractions), spatial distributions of particles. These features serve
as input to the CNN or QCNN models.

So, the model estimates the likelihood that a jet with certain
features belongs to a particular class—essentially performing
statistical inference for jet classification



Some considerations on the LH function

The probability density function p(x|m) is a parametric function of the observable
data x.

The likelihood function L(m) is a function of the unobservable parameter m.

The pdf, a probability density of the data

(random variable), should be normalized to unity / p(a:|m)da: =1
over the domain of the random variable. X

The likelihood, a function of the parameter m, / p(g;o |m)dm =7
obeys no specific normalization. M

In addition, the function values L(m) are invariant under reparametrization of m into

f(m): L(m) = L[f(m)]. No Jacobians here, reinforcing the notion that L(m) is not a pdf

fOr m. From: Statistical Treatment and Analysis of the Data by Annovi



Likelihood based confidence intervals

The likelihood is invariant for parameter transformation

Let’s suppose we have the In L on the right, with a
change of variable we can make it parabolic (left plot).
The original likelihood needs to be regular enough to
have a 1-1 transformation

The parabolic limits at -2 or -2 are the 10, and 20 limits.

Since the likelihood and the likelihood ratio are invariant,
the 10, and 20 limits can be derived based onthe In L
values at -2 or -2 directly on the right plot.

This method is approximate. It should be correct to order
1/N, but not to higher (smaller) orders.

From: Statistical Treatment and Analysis of the Data by Annovi




DEFINITION OF STOCHASTIC PROCESS

A stochastic process is a collection of random variables indexed by time or space, used to
describe the evolution of a system under uncertainty. Each variable represents the state of the

system at a given point, and the process captures how these states change in a probabilistic
mannetr.

In mathematical terms:

A stochastic process 1s a family of random variables {Xt} .. defined on a probability space,
where T is the index set (often representing time), and each X, takes values in a state space S.




Approximate models

The model p(x; 1) is assumed as your best approximation of the relationship between p
and x relevant for the problem at hand.

Systematic uncertainty is, in any statistical inference procedure, the uncertainty due to the
incomplete knowledge of the probability distribution of the observables.
G. Punzi, What is systematics ?

=> Parametrize differences with actual physics trough additional dependence of
nuisance parameters p(x/pv).

The unknown v values are uninteresting for the measurements but do influence the
outcome. Lack of knowledge of v introduces an uncertainty in the shape of p(x/uv).

Uncertainties in the shape of p(xIy) reflects into the systematic uncertainty of the inference

See Appendix - Statistical Uncertainty
From: Statistical Treatment and Analysis of the Data by Annovi See Appendix - Systematic Uncertainty
See Appendix - Model Uncertainty




Sufficiency principle
A statistics s is sufficient for u if it keeps the full information on p of a original
sample.

Principle of Sufficiency : If s(x....,x ) is sufficient for |, then any inference on
depends on the sample x.....x only through the statistics s(x....,x ).

Definition: S is sufficient for p if the conditional probability of the sample x....,.x_
given a certain value s(x....,x ) does not depend on L.

P X [ S(X X )y 1) = P(Xe X S(Xo0,X )



DEFINITIONS (PROBABILITY)

Random event: an event that has >1 possible outcome. The outcome isn’t predicted
deterministically, but a probability for each outcome is known.

"(Random) variables" or "observables”: Random events are associated to variables X,
which take different values, corresponding to different possible outcomes.
Each x value has its probability p(x). The outcomes generate a probability distribution of x.

Population (observable space): A collection of random events that forms the hypothetical
infinite set of repeated independent and (nearly) identical experiments.

Observed distributions: finite-size random samplings from the corresponding population’s
parent distributions.

See Appendix -Probability (1)

From: Statistical Treatment and Analysis of the Data by Annovi
|




DEFINITIONS (INFERENCE)

Some definitions

Observables: x,y These are the quantities we measure in the experiment

Parameters: |1,v, These are the parameters we want to estimate.

The estimate of the parameters are based on statistics:

Statistics: s(x,y) are functions of the observables ONLY. They are used to estimate

the values of the parameters.

NOTE: Since the observables are following a probability distribution, s is following a

probability distribution

Statistical inference is the science that studies how to use statistics (s) to do

inference on the parameters

From: Statistical Treatment and Analysis of the Data by Annovi

Definition: Statistical inference is the process
of drawing conclusions about a population
based on a sample of observed data.

In Particle Physics Context:

* We observe jet features (energy,
momentum, angular distributions).

* These are treated as random variables.

 The goalis to infer the underlying class (top
vs QCD) from these observables.

See Appendix - Inference




GLUCONS

Definition of Gluons in QCD (Quantum Chromodynamics)

In Quantum Chromodynamics (QCD), gluons are the elementary gauge bosons that mediate
the strong interaction between quarks. They are the force carriers of QCD, analogous to
photons in electromagnetism, but with a crucial difference: gluons themselves carry color
charge, allowing them to interact with each other.

* Gluons are massless, spin-1 particles.

* There are eight types of gluons, corresponding to the eight generators of the SU(3) color gauge
group.

 Their self-interaction leads to key QCD phenomena such as color confinement (quarks and

gluons are never observed 1n isolation) and asymptotic freedom (quarks behave as free particles
at high energies).




Input Parameters
of Interest

THESE FEATURES ALLOW TO
UNDERSTAND THE THREE-
DIMENSIONAL GEOMETRY OF
THE DETECTOR AND ANALYZE
HOW ALARMS PROPAGATES
DURING THE EVENT.

TEMPORAL AND KEY
PARAMETERS HELP
DISTINGUISH ALARM EVENTS
FROM BACKGROUND NOISE,
SUCH AS WAVE LOG.

Feature

Entity

time

AlertGroup

AlertKey

Message

Severity

Description

The object or system component that triggered the alarm (e.g.,
server, database, application). Acts as the spatial anchor of the
event.

Timestamp of the first event detection

The family or category of the alarm (e.g., network, security,
application). Provides semantic context similar to identifying the
interaction type or topology when high-energy collide (e.g. at the
LHC)

A unique identifier or subcategory within the AlertGroup (e.g.,
“CPU overload” under “Server Health”). Refines the

classification—Iike distinguishing between Top Quark Jet and
QCD Jet.

The descriptive summary of the alarm, often including
timestamp, severity

A predefined classification of alarm gravity, indicating the
urgency and potential impact of an event. Common levels include
critical, major, minor, and informational, guiding the response

priority.



TWO LEVELS OF PARAMETERS IN IT-

SPHERE GNN RECONSTRUCTION

* The node features (Entity, Timestamp,
Severity, Alertgroup, AlertKey, Message,
describe the detector response.

* The target parameters (Impact, Root cause,
Alarm vs Log waves, etc.) are the quantities
we want to infer from that response.

* The sensor readings (position, time,
intensity) are your inputs.

* The event that caused those signals is the
target you want to reconstruct.

Input Features (Node-
level)

Examples

Entity (server, database,
application),
Timestamp (t), Severity
(critical, major, minor),
AlertGroup, AlertKey,
Message

Role in high-
energy collide

These are the
observable
quantities for
each alarm.

Target Parameters
(Event-level)

Event impact, Root
cause location,

Alarm vs log

wave classification,
Structured vs diffuse
alarm topology

These are the
quantities that
QNN aims to
reconstruct or
classify for each
event (alarms vs
log waves)




QUANTUM ENCODING LAYER

Purpose: Converts classical image data into quantum states.

Encodings tested:

TPE (Tensor Product / Angle Encoding): Simple rotation-based encoding.

HEE1 / HEE2 (Hardware-Efficient Encoding): Uses native quantum gates, one or two layers.

CHE (Classically Hard Encoding): More complex, less trainable in this context.

Insight: HEE1 showed best performance and trainability for this task.




QUANTUM CONVOLUTION AND POOLING

Convolution Layer
» Applies two-qubit gates to extract spatial correlations.

* Two circuit types:
* SO(4): Real-valued, fewer parameters (6 trainable).
e SU(4): Universal, more expressive (15 trainable).

* Connects neighboring qubits to simulate classical filters.
Pooling Layer

* Reduces system size by half.

* Uses CNOT + rotation gates.

* Repeated until only one qubit remains for final measurement.




MEASUREMENT AND OUTPUT

* Final qubit 1s measured using Pauli-Z.
* The expectation value 1s interpreted as the classification score.

* Qutput: top-quark jet or QCD jet.




Sufficiency of a statistics

Example:

¢ X.X_ “Bernoulli (p)

=>the number of successes is sufficient

® X..X “Gaussian with known variance and unknown mean value L.
=> The sample mean is a sufficient statistics for L.

Same as before for poissonian with rate

Same as before for exponential with characteristic time T

X, 1S @ sufficient statistics for m for the uniform U(O,m).

What about x.....x “gaussian with unknown variance and known mean value u?
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Examples

Binomial

Poisson

Exponential

p(k;p) =[] (;:_)p""(l —p)ki =

()




TEMPORAL SAMPLING =
STATISTICAL TRIALS

InIT:

Each minute (or second) 1s a sampling window.
Each event (e.g., transaction, ping, query) is a trial.

Over time, you build a dataset of binary outcomes — just
like in jet classification.

This means:
You can apply frequentist inference to system logs.

You can use log-likelihood ratios to compare system
configurations.

You can apply Wilks’ thresholds to detect statistically
significant performance drops.




EFFICIENCY

Definition: Efficiency 1s the probability that a physical event (e.g., a top jet) is correctly
identified by the selection system or classifier.

Number of correctly selected signal events

Effici =
lciency Total number of signal events present

Context:
* Used in experimental physics to evaluate detector or algorithm performance.
* Refers only to the events of interest (e.g., top jets), not the entire dataset.

Example: If the dataset contains 500 top jets and the model correctly identifies 480 of them:
Efficiency=480/500=96%




Statistics and inference

We want to make inference on the parameter m of our model by using our dataset x....,.x_
The statistics s(x,....x ) is a reduction of the size of data.

What if we do inference on our parameter m by using s(x,...,x ) ?

Note: if s(x,...x )= s(y,....y ), the inference on m using s will be identical.
Does it mean that the inference using x,....x _and y,...y ) would give the same identical inference on p?
In general no! Is there anything special when instead this is happening?

Goal: We want to use statistics that are not removing information we need, just the inessential ones....

Two principles: Sufficiency and Likelihood




Some first properties of the Likelihood

e If we have more independent variables, the likelihood is the product of the
L( m | x) for the single variable.

e Since sums are easier to be handled then multiplication, one uses logL(mlx) instead
of L(mlx)

e NOTE:L is a function of m, as such, it has a domain. It is very important to verify if
the domain depends on m.

e If you have several replicas of x, you will have several different functions L. Each
functions will show a slightly different behaviors WRT m.

e If you fix a certain value of m=mO in the domain of L, L(m=mO0Ix) becomes a statistics.
One can calculate its PDF

e Similarly, one can define the point at which L is maximum for given x data. That again

is a statistics, and so one can calculate the PDF.
o  This is the PDF of the which is the parameter value that maximizes the likelihood as function of the x
data

From: Statistical Treatment and Analysis of the Data by Annovi




ACCURACY

These two terms may sound similar, but they have distinct meanings and roles depending on the
context — especially in jet classification and statistical inference.

Accuracy

Definition: Accuracy is the proportion of correct classifications out of the total number of
classifications made.

Accuracy=Number of correct classifications/ Total number of total samples
Context:
» Used to evaluate classification models (CNN, QCNN, etc.)
« It’s a global metric: includes both true positives and true negatives.
Example: In the QCNN paper, if the model correctly classifies 960 out of 1000 images:
Accuracy=960/1000 -> 96%




PHYSICAL INTERPRETATION

* In the study, the authors train quantum and classical neural networks to classify jet images as either top-quark
jets or QCD jets, using the JetNet TopTagging dataset. Each image 1s labeled, and the model outputs a
prediction: correct or incorrect.

This setup naturally leads to a binomial model:

» Each classification is a Bernoulli trial (success/failure).

* The total number of trials is N=1000 (or a subset, e.g. test set).

* The number of correct classifications is K, which varies depending on the model and setup.
Physical Meaning in Jet Classification

» Efficiency: The MLE p”"=0.96 tells us the best estimate of the model’s ability to correctly classify jets.

Uncertainty: The confidence interval (e.g. [0.942, 0.974]) tells us how precise that estimate is.

Model comparison: If a CNN has p*=0.93 with a wider interval, the QCNN may be statistically superior.

Experimental relevance: This efficiency affects downstream physics analyses — e.g. cross-section measurements,
background rejection, signal purity.




ACCURACY VS In your binomial pipeline:

» If you consider all classified events, you're measuring accuracy.

E FFI c I E N CY  If you focus only on top jets and ask how many were correctly

1dentified, you're measuring efficiency.

Concept Accuracy Efficiency

What it Correctness over target events
Correctness over all examples
measures only

Denominator All examples (top + QCD) Only signal examples (e.g., top jets)

. . : e e Experimental physics, event
Typical context Machine learning, classification g ) S

selection
Includes false positives and false

Sensitivity negatives

Focuses on true positives




EXAMINER-LEVEL INSIGHT

By applying binomial inference:
* You've translated raw classification counts into a statistically rigorous estimate.
* You've used likelihood theory and Wilks’ theorem to extract uncertainty.

* You've interpreted the result in terms of detector performance, model reliability, and physics
impact.

This shows mastery of both statistical inference and its physical application — exactly what
your examiners are looking for.




@ Two Ways to Find the Most
Likely Value 9

1. Analytical Calculation: p = X TWO WAYS TO FIND THE
DU M OST LIKELY VALUE PA

(MLE) method for the binomial distribution.

* It comes from differentiating the log-
likelihood:

logL(p) = Klogp + (N — K)log(1 — p)

and solving:

dl L(p)=0 = f)—K
d—pog(p)— =N

Analytical Calculation




2. Numerical or Graphical Search for the

* You evaluate L(p) over an interval (e.g. FI N D T H E M 0 ST
p € [0.9,1.0]) and look for the peak.
LIKELY VALUE PA
» Analytical derivation is hard or

impossible

Maximum of L(p)

You want to visualize the likelihood
shape

You're working with more complex
models (e.g. GNNs, QCNNs, nonlinear
systems) Numerical or Graphical Search for the

Maximum of L(p)




WHY USE
BOTH?

@, In Practice:

You compute p”=0.96 =
0.96 analytically

Then you verify that the
peak of L(p) in the plot is at

p=0.96

This confirms that theory
and practice align — a
great way to show
consistency between
approaches

¥ Why Use Both?

Method

Analytical
p=K/N

Graphical
maxL(p)

Advantages

Fast, exact,
theoretical

Visual,
infuitive,
generalizable

Purpose

Direct
estimation

Verification,
teaching,
extension




COMPUTE THE MAXIMUM LIKELIHOOD ESTIMATE (MLE)

Compute the Maximum Likelihood Estimate (MLE)

p_hat =K/N
print(f"MLE estimate cutro for p: {p_hat:.4f}")

Define the range of p values to explore:

p_values = np.linspace(0.9, 1.0, 500)
* 0.9: lower bound of the interval

* 1.0: upper bound

* 500: number of points in the interval This creates a fine grid of 500 values between 0.9 and 1.0
to evaluate the likelthood function.




COMPUTE THE BINOMIAL LIKELIHOOD FOR EACH P

Compute the binomial likelihood for each p

likelihood = binom.pmf(K, N, p_values)

For each value of p, compute the probability of observing exactly K=960 successes out of N=1000 trials. This is the
likelihood function L(p)

Store results in a DataFrame:

df = pd.DataFrame({"p": p_values, "likelihood": likelihood})

Create a table with two columns: one for p, one for L(p). Useful for plotting and further analysis.




LIKELIHOOD ANALYTIC EQUATION

Since the binomial coefficient (N K) is constant with respect to p, we can ignore it when
comparing likelithood profiles. So we work with the log-likelihood:

logL(p) = Klogp + (N — K)log(1 — p)




PLOT THE LIKELIHOOD FUNCTION

* Plot the likelithood curve
* Mark the MLE p*=0.96 with a vertical red dashed line

plt.figure(figsize=(8, 5))
plt.plot(@f"v"], df]"likelihood"], color="darkblue", label="L(p)")
plt.axviine(K/N, color="red", linestyle="--", label=f"MLE: p = {K/N:.3f}")




COMPUTE THE LOG-LIKELIHOOD RATIO

o L_max = binom.pmf(K, N, p_hat)
» Jog likelihood_ratio = -2 * np.log(likelihood / L_max)

Where:

* L_max: maximum likelithood value at p”
 log likelihood ratio: measures how much worse each p is compared to the best one.

This 1s the Wilks statistic:

LLR(p) = — Zlog(L—(p))

L(®)




PLOT THE LOG-LIKELIHOOD RATIO

plt.figure(figsize=(8, 6))

plt.plot(dfl"p"], dfl"log_L_ratio"], color="darkgreen", label=r"$-2 \log \left( \frac{L(p)}{L(\hat{p})}
\right)$")

plt.axhline(1, color="gray", linestyle="--", label="Wilks 1o threshold")
plt.axhline(4, color="gray", linestyle=":", label="Wilks 2o threshold")
plt.axvline(p_hat, color="orange", linestyle="--", label=f"MLE p = {p_hat:.3f}")
* Plot the log-likelihood ratio curve

* Add horizontal lines at 1 and 4 (Wilks thresholds for 1o and 20)

* Mark the MLE again




DEFINE THE LOG-LIKELIHOOD RATIO FUNCTION

DEFINE THE LOG-LIKELIHOOD RATIO FUNCTION

o def lir(p):

e return -2 * np.log(binom.pmf(K, N, p) / L_max)

This function computes the log-likelihood ratio for any value of p. Needed for root-finding.
Find the 10 confidence interval:

from scipy.optimize import brentq

p_lower = brentq(lambda p: lir(p) - 1, 0.85, p_hat)

p_upper = brentg(lambda p: lir(p) - 1, p_hat, 0.999)
* Use Brent’s method to find the values of p where the log-likelihood ratio equals 1

* These are the lower and upper bounds of the 68% confidence interval




FIND THE 12 CONFIDENCE INTERVAL

« Use Brent’s method to find the values of pp where the log-likelihood ratio equals 1
* These are the lower and upper bounds of the 68% confidence interval
from scipy.optimize import brentq
p_lower = brentq(lambda p: llr(p) - 1, 0.85, p_hat)
p_upper = brentq(lambda p: llr(p) - 1, p_hat, 0.999)
Print and visualize the confidence interval:
print(f'Intervallo di confidenza 1o: [{p_lower:.5f}, {p_upper: 5f}]")
plt.axviine(p_lower, color='green’, linestyle="-', label=fp_lower = {p_lower:. 4f}")
» plt.axviine(p_upper, color="blue’, linestyle="-', label='p_upper = {p_upper:.4f}')

» Display the confidence interval

* Add vertical lines at the bounds to the plot




DEFINITION LLR(P)

The formula for the log-likelihood ratio (LLR) in the
binomial model is:

This version 1s often used in numerical implementations
to avoid computing the binomial coefficient repeatedly.

LLR(p) = — Zlog(L—(p))

L(®)

Where:
© L= (ﬁ)p"(l —p)" ¥ is the binomial
likelihood for a given value of p

e P= % is the maximum likelihood estimate
(MLE)

» L(P) is the likelihood evaluated at the MLLE
Since the binomial coefficient (ﬁ) is constant

for fixed N and K, it cancels out in the ratio. So
the simplified expression becomes:

p¥@ —p)¥
pra—pYk

LLR(p) = — Zlog(

This version is often used in numerical
implementations to avoid computing the
binomial coefficient repeatedly.




LLR(P) - INTERPRETATION (I)

* Likelihood comparison: It compares the likelihood of any value p to the maximum likelihood
at p”.
* If p=p”, then L(p)=L(p”") and LLR = 0 — perfect fit.

* Penalty for deviation: As p moves away from p”, the likelihood decreases, and the LLR
increases. This reflects how incompatible that value of p is with the observed data.

» Logarithmic scale: The log transformation makes the comparison more sensitive to small
differences and ensures symmetry around the peak.

* Multiplying by —2: This scaling aligns the statistic with a chi-square distribution under regular
conditions (Wilks’ theorem), allowing us to use standard thresholds for confidence intervals.




WHAT IS THE LIKELIHOOD PRINCIPLE?

You have a statistical model p(x | m), where:
 x 1s the observed data

* m is the unknown parameter

L(mlIx) 1s the likelihood function: 1t tells us how compatible the
parameter m 1s with the data x




LLR(P) - INTERPRETATION (lII)

Physical Analogy

Imagine you're reconstructing a neutrino energy from IceCube data:

p” 1s your best estimate.

The LLR tells you how much worse other energy values are, based on how well they explain the
observed hits.

The confidence interval is the range of energies that are statistically compatible with the data.
The LLR curve 1s U-shaped, centered at p”.
The horizontal lines at LLR = 1 and LLR = 4 mark the 1o and 20 thresholds.

The vertical lines at the intersection points define the confidence interval.




LLR(P) INTERPRETATION (ll)

Confidence Interval via Wilks

Wilks’ theorem: For large samples and regular models, the LLR follows a chi-square
distribution with degrees of freedom equal to the number of parameters tested.

Thresholds:
« LLR=1 — 68% confidence level (10)
« LLR=4 — 95% confidence level (20)

Visual meaning: The confidence interval includes all values of p for which the LLR is below the
threshold. It’s the region where the likelihood is “not significantly worse” than the maximum.




STATISTICS

What it is: a statistic is a function of the measured observables, e.g. s(x), used to estimate unknown parameters of the
model.

Examples:
* Sample mean x”
» Standard deviation
* Test statistic t(x) for hypothesis testing

Role: The statistic is the operational tool used for inference. It is not the model, not the probability—it’s a number
computed from data.

A statistic is a number computed from the data. It’s not theoretical—it’s concrete: the mean, the standard
deviation, the value of a test statistic.

Example:
You observe 3, 4, 5, 6 photons in 4 events. The sample mean is:
X =3+4+5+6/4=4.5

This is a statistic: it helps you estimate y, but it’s not a probabhility




STATI STI CS These two concepts are often confused, but they play very different roles in
statistical inference. Let’s break it down clearly:

VS PROBABILITY Key Diferenc

Probability belongs to the model: it tells you how likely a data point is.

Statistics belong to the data: they summarize or analyze what you’ve observed.

A theoretical measure of how likely an

Definition A function of observed data ,
event is

Depends
Measured data x The model p(x; u)
on

To estimate parameters or test i ) :
Purpose b To describe uncertainty in the model
hypotheses

Example Sample mean x, variance, test t(x) p(x =3 | u=5) = 0.14 (Poisson)




MODEL (I)

 What it is: The model is your theoretical assumption about how the data are generated.
Formally, it’s the probability density function p(x; 1) that describes the likelihood of observing x
given a parameter value p

« Examples:

* Gaussian distribution for measurements with uncertainty
 Poisson distribution for event counts

* Monte Carlo simulation model for IceCube events

* Role: The model is the bridge between theory and observables. It’s used to compute
probabilities, likelihoods, and guide inference.




MODEL (ll)

The model is your theoretical description of how the data are generated. It’s a mathematical function that links the
parameters of interest (like energy, direction, or signal strength) to the observables (like hits in DOMs,
reconstructed tracks, etc.).

Formally:

* Model=p(x; W)

* Xx: observed data (e.g., number of hits, timing, energy)

* W parameters (e.g., true energy, signal strength, neutrino type)

Example:

In IceCube, you might model the number of hits in a DOM as a Poisson distribution:

Here, the model is the Poisson function, and A is the expected number of hits (depends on energy, geometry, etc.).




PROBABILITY (l)

What it is: Probability is a measure of the expected frequency of an event. In frequentist statistics, it’s
defined as the limit of relative frequency in repeated experiments.

Examples:
* p(x): probability of observing x
* p(x|W): conditional probability given the parameter (u fixed)
* p(AlB): conditional probability (Bayes)
Role: Probability describes uncertainty in the observables, given a model. It’s used to:
* Define distributions
* Compute p-values

* Build confidence intervals




PROBABILITY (ll)

Probability 1s a numerical value that tells you how likely a specific outcome i1s, given a model.
Formally:

Probability=p(x=x0|p)
It’s the value you get when you plug your data x, into the model for a given parameter Q.

Example:

Using the Poisson model above, if you expect A=>5 hits, the probability of observing exactly 3 hits
1S:




PROBABILITY VS MODEL

What it describes Depends on Role in inference

The full function

Parameters u Describes how data are generated
p(x; 1)

Data x,, parameters Quantifies likelihood of an
U outcome

Probability A number p(xo; 1)




LIKELIHOOD

What it is: The likelihood is the function L(p)=p(xobs;u), i.e. the probability of observing the actual data
xobs given a parameter value p. Unlike probability, here the data are fixed and the parameter varies.

Examples:
« L(w=ILp(x; w) for independent data
« Likelihood ratio: A=L(u0)/L(u")
 Profile likelihood: maximized over nuisance parameters
Role: Likelihood is the core of frequentist inference. It’s used to:
» Estimate parameters (maximum likelthood)
* Build tests (Neyman-Pearson, Feldman-Cousins)

* Derive confidence intervals (Wilks)




© Summary Table

Concept

Statistic s(x)

Model p(x; p)

Likelihood L(y)

Probability p(x)

Depends on

Data

Theory

Observed data

Model

Fixed Variables

Parameters

Parameters

Observables

Parameters

Varying Variables

Observables

Observables

Parameters

Observables

Main Purpose

Estimate parameters

Describe the process

Infer parameters

Quantify uncertainty




INFERENCE (I)

Inference 1s the broader process of drawing conclusions about p using the likelihood and other
statistical tools.

In this binomial example, inference might include:
 Point estimation: Using the MLE p"=0.96

* Interval estimation: Constructing a confidence interval for p e.g. using Clopper-Pearson or
likelihood ratio methods

« Hypothesis testing: Testing HO:p=0.95 vs H1:p#0.95
* Goodness of fit: Evaluating whether the binomial model with p=0.95 fits the data well.




| N F E R E N C E « Inference is the goal.

» It uses the likelthood (and other tools) to make decisions or estimates.

( I I ) It answers questions like “What is the best estimate of p?”, “Can we
reject Hy?”, or “How uncertain is our estimate?”

Concept Likelihood Inference

A process of reasoning using data and
What it is A function L(p) based on fixed data > J g
models
Depends . . a1 . ..
on Fixed data k = 960, variable parameter p Likelihood, data, statistical framework
Quantify how well each p explains the

Purpose
P data

Estimate, test, or bound the parameter p

“We estimate p = 0.96, with 95% Cl = [0.94,
0.97]"

Example L(p) — ( 1906000)p960(1 _ p)40




APPENDIX - SUMMARY CHI QUADRO

® Summary

Symbol

A(p)

X1

Alp) <1

Convergence

Meaning

Relative log-likelihood
statistic

Limiting distribution under
Wilks' theorem

Values of p compatible at
68% level

Justifies using thresholds to
build intervals

3. How is it used to build confidence

intervals?

Thanks to this convergence, we can say:

¢ Values of p such that A(p) < 1 form a 68%
confidence interval (i.e., 10)
Values such that A(p) < 4 form a 95%
confidence interval (i.e., 20)

In practice:

Confidence interval = {p | A(p) < thhreshold}




LR Ordering (Feldam-Cousin)

Those issues were solved by adapting a ordering,
based on the likelihood ratio

Choose a value mo of the parameter
and for each x calculate p(a:

(q _ Plalmo)

A

I

~ p(z|m)
(| )+ iy 54w n

L 4
4

mi
bl O
mo

>

4 i T
The “accumulation score” of each element in x, no longer depends only on p(x|
mo) but also on p(x|m) at other m values

[Cranmer]



Likelihood ratio ordering

1. Choose one value for m, mo and generate simulated pseudodata accordingly. MmO is “true”

2. For each observation x calculate (i) the value of the likelihood at mo, p(x|mo)=L(mo) and (ii) the value

maximum likelihood L(m) over the space of m values.

the pseudo data
3. Rank all x in decreasing order of likelihood ratio LR=Lx(mg)/Lx(m).

is data
4. Accumulate starting from the x with higher LR until the desired CL is reached. generated
5. Repeat for all m based on mO

LR=L_(m)/L (M),
its ordering, and
accumulation is

As the likelihood is metric-invariant so is the ratio of likelihoods. Therefore LR-

ordering preserves the metric, mostly avoids empty confidence regions and has

several other attractive features. By far the most popular ordering in HEP. done for each
given mO.

Take LR-ordering as default option unless there are strong motivations against it.



https://journals.aps.org/prd/abs
LR ordering in Practice tract/10.1103/PhysRevD.57.3873

[Phys Rev D 57,3873 (1998)]
| ' 1 - Use a different ordering

| algorithm: Likelihood-Ratio
/- ordering. NB: depends on

) / / 1 the pdf for other values of y
X2 o / .
X3

-IO'd i

CR3 CR2 " CRt’ ” gt

+ Removes unpleasant empty intervals and avoids flip-flopping
Invariant for change of observable (not mentioned in paper!)




Point estimation: s(x) estimates the "best" value of p in its space A

s(x):x— puy, €A

Interval estimation: s(x) estimates the an interval for (L in its space A
s(x) :x— I (u) C A

Hypothesis testing: s(x) decides this hypothesis H. is favorite by X (i=0, 1, 2, etc.)
s(x):x—1; H;

Goodness of Fit (testing): s(x) decides how well the data agree with the model.

S(.CE) : T 2 Pualues Pvalue € [07 1]




UNCERTAINTY VS CONFIDENCE
INTERVAL

Incertezza (Uncertainty)

Refers to the degree of doubt or variability in a measurement or estimate.
It’s a general concept that can be expressed in many ways: standard
deviation, standard error, confidence intervals, credible intervals, etc.

It quantifies how much the estimate might fluctuate due to sampling
variability, noise, or model assumptions.

* In physics, uncertainty often refers to instrumental or statistical error.
Confidence Interval

A specific statistical tool used to express uncertainty about a parameter
estimate.

It defines a range of values that, with a given confidence level (e.g. 68%,
95%), 1s likely to contain the true value of the parameter.

* Based on sampling theory and often derived from likelihood ratios,
standard errors, or bootstrap methods.

Example from Your Exercise

You estimate p = 0.96

You compute a confidence interval:

| suchthat A(p) <1

[plower’ pupper

This interval expresses the uncertainty in
your estimate of p, but it is not the only way
to quantify uncertainty.



LIKELIHOOD-BASED INFERENCE

In frequentist statistics, likelihood-based inference estimates unknown parameters by evaluating the likelihood function:

L(@;x)=P(x|6)

This function expresses how probable the observed data x is under different values of the parameter 0

* The goal is to find the value of 0 that maximizes L.(0;x), i.e., the parameter that best explains the data.
Observables x are random variables sampled from a distribution

« Parameters 6 are unknown quantities to be inferred
» Statistics s(x) are functions of observables used to estimate 6

» Since x is stochastic, s(x) also follows a distribution




UNCERTAINTY VS CONFIDENCE
INTERVAL

¥ Summary Table
= Example from Your Exercise

Expressed

Concept Definition
- As

You estimate § = 0.96

You compute a confidence interval:
General
Std. dev,

error bars,
Cl, etc. [plower’ pupper]

measure of
doubt or
variability

Uncertainty suchthat A(p) <1

Specific R This interval expresses the uncertainty in
Confidence range with likelihood your estimate of p, but it is not the only way

Interval statistical

li t ntify uncertainty.
meaning or sampling 0 qua Y uncerrainty.




WILKS’ THEOREM

Statement of the Theorem

Wilks’ Theorem states that, under regularity conditions and for large sample sizes, the log-likelihood ratio statistic:

converges in distribution to a chi-squared distribution with degrees of freedom equal to the number of parameters being tested.
Interpretation

* L(p): likelithood for a candidate parameter value

>Alp) = — 210g(%) >

* L(p"): maximum likelthood

* A(p): measures how much worse p fits the data compared to p”

A(p) measures how much worse a candidate value p explains the data compared to the optimal value p*
« Itis zero at the MLE: A(p™)=0

» It grows as p moves away from p”

In Wilks’ Theorem:

* A(p) asymptotically follows a chi-squared distribution with degrees of freedom equal to the number of parameters

» This allows us to define uncertainty intervals




L What Does A(p) < thhreshold
Mean?

Symbol meanings

* A(p): the log-likelihood ratio statistic,
defined as:

Alp) = — Zlog(@

L(p) )

It measures how much worse a candidate value p
fits the data compared to the best-fit value p.

Xiresholg® @ Critical value from the chi-
squared distribution, corresponding to a
desired confidence level.

WILKS’ THEOREM

In Wilks’ Theorem:

* A(p) asymptotically follows a chi-squared
distribution with degrees of freedom
equal to the number of parameters

* This allows us to define confidence
intervals by finding values of p such that:




@ Interpretation of the inequality

The inequality A(p) < x4 ...1q defines the set vv II ,I( S , TI I I ll,() Iz I ll,M

of parameter values that are statistically
compatible with the observed data at a given
confidence level.

In other words:

« If A(p) < 1, then p lies within the 68%
confidence interval (10)

Symbol Meaning

If A(p) < 4, then p lies within the 95%
confidence interval (20)

A(p) Log-likelihood ratio statistic

; Critical value from chi-squared
Athreshold distribution
= In your exercise
Defines confidence region for

Inequality
parameter p

You use this inequality to find the values of p
such that:

—Zlog(%) <1

This gives the 1o confidence interval around the
MLE p = 0.96.




WILKS® THEOREM: REGULARITY

For the log-likelihood ratio (LLR) to follow a chi-square distribution, several regularity
conditions must be met:

* The likelihood function must be sufficiently smooth (i.e., differentiable with respect to the
parameter).

* The estimated parameter must lie in the interior of the parameter space (not on the
boundary).

* The model must be identifiable: each parameter value must correspond to a unique probability
distribution.

* The sample size must be large: the chi-square approximation 1s asymptotic, meaning it
becomes accurate as N—oo.




WHY A BINOMIAL DISTRIBUTION WAS CHOSEN

The binomial distribution 1s appropriate because the experiment involves:
A fixed number of independent trials N=1000

* Each trial results in a binary outcome: success or failure

* The probability of success p 1s assumed to be constant across trials

This matches the definition of a binomial process. Therefore, the number of observed successes
K=960 follows a binomial distribution:

K~Binomial(N,p)




DEFINITION OF
CONFIDENCE INTERVAL

A confidence interval is a range of values for an unknown
parameter that is believed to contain the true value with a
specified level of confidence.

It reflects the uncertainty in the estimate due to sampling
variability.

Example from This Exercise
* You observe K=960 successes out of N=1000 trials
* You estimate p_hat = 0.96 using Maximum Likelithood

* Using the log-likelihood ratio and Wilks’ theorem, you find
the values of p for which:

¢ This defines the 68% confidence interval
(10) around p

Result:

Confidence interval (10) = [p, ..o P

upper]

This interval contains the values of p that are
statistically compatible with the observed data at
the 68% confidence level.



+ STRONG LIKELIHOOD PRINCIPLE

Even if x and y come from different models,

if L(m|x)=const-L(m|y) then they should give the same inference about m.
I. But be careful:

* The strong principle can be violated, for example:
* When the data collection method (experimental design) affects inference

* In frequentist hypothesis testing, where the p-value depends on unobserved data (the
“sampling space”)




CROSS-ENTROPY LOSS

Purpose: Measures the performance of a classifier that outputs probabilities between 0 and 1.

Formula:

1
$LCross—Entr0py - = N Zi\; 1 [yilog(fi) + (1 i y;)log(l i ft)]$
where:

y; is the true label (0 or 1),

fi is the predicted probability,

N is the number of training samples.

Use case: Binary classification with probabilistic outputs.



MEAN SQUARED ERROR (MSE)

2. Mean Squared Error (MSE)

* Purpose: Measures the average squared difference between predicted and true values.

* Formula:

SLuse = %ngv: 1 (yi — 9,;)25

where:
y, is the true label (1),

9. is the predicted value.

Use case: Regression or binary classification with +1 labels.




HINGE LOSS

3. Hinge Loss

* Purpose: Commonly used in support vector machines; penalizes predictions that are not

confidently correct.

Formula:

1
SLHinge — N Zivz 1 max(0,1 — e 5)1)5
where:

y, is the true label (£1),

9. is the predicted value.

Use case: Binary classification with margin-based decision boundaries.




CONFIDENCE INTERVAL

A confidence interval provides a range of values that, with a certain probability (e.g., 95%),
contains the true value of the parameter.

Definition: For a parameter estimate 6", a 95% confidence interval 1s:
0712 975-SE(07)

where z, 975 1s the critical value from the standard normal distribution (= 1.96), and SE(6") 1s the
standard error of the estimator.

Interpretation: If we repeated the experiment many times, 95% of the intervals constructed this
way would contain the true value of 0




STANDARD DEVIATION

Standard deviation measures the spread of values
around the mean. In inference, 1t reflects how much an
estimate can fluctuate across different samples.

In your case: If you train the QCNN 50 times, the
standard deviation of the accuracy across runs tells you
how stable the model is.

Formula:

where x; are the observed values and x is their

mean.




Formula:

VARIANCE

Var(d) = E[(8 — E[A])?]

The variance of an estimator quantifies how much the estimate 6" varies
around its expected value. Low variance - high precision

This formula expresses the variance of the estimator 0, which is a High variance - the estimator is sensitive to
measure of how much the estimate of a parameter can fluctuate around

. . . . data fluctuations
its average value if the experiment were repeated many times.

Step-by-Step Explanation

Interp retation 6: the estimator, i.e., the value you obtain
from the data (e.g., the average accuracy of
The variance of the estimator tells you how precise the estimatoris. If your QCNN).
the variance is small, the estimator is stable and gives similar values E[6]: the expected value of the estimator,
meaning the theoretical average you'd get if
each time. If it’s large, the estimator is unstable and can produce you could repeat the experiment infinitely.
very different results depending on the data. (6 — E[8])*: the squared distance between

the estimator and its mean = this measures
how much it “oscillates.”

E[ - |: the expectation operator = it takes
the average of all those oscillations.




VARIANCE OF THE ESTIMATOR
- TOP JET TAGGING

Application to Your Research
In the QCNN paper:

* Multiple runs (50 per setup) allow
computing the mean and standard
deviation of accuracy

 Confidence intervals can be constructed to
compare performance

* Dimensional Expressivity Analysis (DEA)
helps reduce model variance by eliminating
redundant parameters

# Example in Your Context

In the QCNN paper, suppose you estimate the
average accuracy over 50 runs:

. A
« Each run gives a value 6;

* You compute the mean E[@]

* Then you calculate the variance as:

If the variance is low, it means your QCNN model
is robust and consistent.




CONFIDENCE INTERVAL - TOP
JET TAGGING

In the paper, each model configuration (e.g., SU(4) circuit with Suppose the QCNN model yields the following results:
HEE encoding) is trained 50 times to assess performance.
Let’s say you’re analyzing the classification accuracy
across those 50 runs.

* Mean accuracy across 50 runs:

A
6 = 0.982

» Standard deviation of accuracy:

o = 0.004
Interpretation

« Standard error of the mean:
We are 95% confident that the true accuracy of the QCNN

model lies between 98.09% and 98.31%. A, o 0.004
SE(6) = — = —— ~ 0.00057
. .. . Vi /50
This interval reflects the statistical uncertainty due to
sample variability. It’s a rigorous way to report model To compute a 95% confidence interval, use the formula:
performance—not just a single number, but a range that
accounts for randomness in training and data. 8 + 74975 - SE(D)

Where 20_975 =~ 196. SO:



UNCERTAINTY IN STATISTICAL INFERENCE: SYSTEMATIC
UNCERTAINTY

» Refers to uncertainty in the shape of the probability distribution P(x|u), where p are model
parameters.

* If there are unknown nuisance parameters v (e.g., preprocessing choices, detector effects), they
affect the shape of P(x|u,v).

* Lack of knowledge about v introduces systematic uncertainty in the inference process.




UNCERTAINTY IN STATISTICAL INFERENCE: MODEL UNCERTAINTY

» This concerns whether the chosen model (CNN, QCNN, encoding type, loss function) 1s truly
optimal for the task.

* The paper addresses this by comparing different architectures and circuits (SO(4), SU(4), HEE,
CHE), and applying dimensional expressivity analysis (DEA) to reduce parameter redundancy
while preserving performance.




BOOSTED TOP QUARKS COMPLICATE THINGS

» At high energies (e.g. HL-LHC), top quarks are highly boosted — their decay products are
tightly packed into a single jet.

* These boosted top jets can look very similar to QCD jets in terms of shape, energy distribution,
and substructure.

* Sophisticated classification methods (like CNNs or QCNNs) are needed to tease apart subtle
differences.




HIGH-ENERGY COLLISIONS (TOP QUARK E JET)

* “In high-energy collisions (e.g. HL-LHC)” — In extremely energetic particle collisions, such as those at the Large
Hadron Collider (LHC) or its high-luminosity upgrade (HL-LHC), particles are produced with very high energies.

* “top quarks are often highly boosted” — The top quarks generated in these collisions carry a large amount of
momentum (relativistic boost), meaning they move very fast relative to the lab frame.

» “decay products become collimated into a single jet” — When the top quark decays (into a b-quark and a W boson),
its decay products are so energetic that they don’t spread out in space. Instead, they travel in nearly the same direction,
forming a tightly packed stream of particles—a jet.




HADRONIZE

In high-energy collisions (like those at the LHC), quarks and gluons are produced with a lot of

energy. But here’s the catch: quarks and gluons can’t exist freely—they’re always confined inside
larger particles called hadrons (like protons, neutrons, pions, etc.).

So when these energetic quarks and gluons fly out of a collision, they undergo a process called:

Hadronization — the transformation of free quarks and gluons into bound, color-neutral
particles (hadrons).

This happens because of the strong force described by Quantum Chromodynamics (QCD). It’s
like nature saying: “You can’t leave the party alone—you must form a group!”




HADRONIZE

'_ Parton

Hadronization

L

* A high-energy parton (quark or

gluon) 1nitiates the process.
See Appendix - Partons

Through hadronization, it
fragments into multiple color-
neutral hadrons.

See Appendix - Color-Neutral
Particles

See Appendix - What Does
"Color-Neutral" Mean?

These hadrons travel in roughly
the same direction, forming a jet.




COLOR-NEUTRAL PARTICLES

What Are “Color-Neutral Particles”?

* In QCD, “color” is a property of quarks and gluons (not related to visual color). To be stable, particles must be color-
neutral—meaning their color charges cancel out. Hadrons are such combinations.

* “Color” 1s a quantum property of quarks and gluons, not related to visual color.
« There are three types of color charge: red, green, and blue (and their corresponding anticolors).

» These are used to describe how particles interact via the strong force, which is mediated by gluons.

Why Do They “Travel in the Same Direction”?

When a high-energy quark or gluon 1s produced, it moves fast in a certain direction. As it hadronizes, it creates a spray of
particles (hadrons) that follow roughly the same path. This spray is what we call a:

Jet — a collimated stream of hadrons resulting from the fragmentation of a high-energy parton.
Why Is This Important?

In experiments, we don’t see quarks directly—we detect jets. So understanding hadronization is crucial for interpreting

what happened in the collision. And in your paper, distinguishing top-quark jets from QCD background jets depends
on analyzing these hadronized patterns



WHAT DOES "COLOR-NEUTRAL" MEAN?

« A particle is color-neutral (or “white”) when its constituent color charges combine to cancel out.
* For example:

* A baryon (like a proton or neutron) contains three quarks: one red, one green, one blue — together they form a neutral
combination.

* A meson contains a quark and an antiquark with opposite colors (e.g., red and anti-red) — also neutral.
* Only color-neutral combinations can exist as free, stable particles in nature.

« If a particle had a net color charge, it would be subject to confinement—it couldn’t exist independently and would
quickly form a neutral bound state.

« This is a consequence of color confinement: quarks and gluons are never observed in isolation, only in bound states
that are color-neutral.

So in essence, color-neutrality is a prerequisite for physical particles to be stable and observable. It’s a bit like electric
neutrality in atoms—charged particles tend to combine into neutral systems to minimize energy and become stable.




PARTONS

The term parton was introduced by Richard Feynman in 1969 to describe the internal constituents
of hadrons (like protons and neutrons) during high-energy collisions. Today, we understand that
partons are:

* Quarks: fundamental particles with fractional electric charge and spin Y.
* Gluons: bosons that mediate the strong interaction, binding quarks together.

In practice, when a proton is accelerated and collided, 1t doesn’t behave like a rigid particle, but
rather like a “bag” full of partons that interact with each other and with partons from other
incoming particles.




GLUONS

Gluons are the carriers of the strong interaction, one of
the four fundamental forces of nature. Here are their key
properties:

Unlike photons (which mediate the electromagnetic
force), gluons interact with each other because they
carry color charge. This makes quantum
chromodynamics (QCD) much more complex and
fascinating.

Property

Type

Yelly

Electric
charge

Color
charge

Role

Value/Description

Gauge boson

Theoretically zero
(experimental limit < 20
MeV/c?)

Yes (eight distinct types)

Bind quarks inside hadrons
(protons, neutrons)




GLUONS: CONNECTION TO YOUR WORK

In the context of jet tagging and hadronic events, partons are the “seeds” from which particle
showers (parton showers) develop, eventually forming the jets we observe. Gluons play a crucial role
in these showers, emitting radiation and contributing to jet structure. This is exactly the kind of
phenomenon your GNN and QCNN models aim to classify or reconstruct.

What Kind of “Radiation” Do Gluons Emit?

Unlike photons, gluons do not emit electromagnetic radiation. However, in the context of QCD, we
talk about gluon radiation in an analogous way to photon emission in QED:

 When an accelerated quark (or another gluon) interacts via the strong force, it can emit a gluon.
» This process 1s known as gluon emission or parton showering.

* It’s a form of color radiation, not light: gluons carry color charge, so their emission alters the
chromodynamic configuration of the system.

In practice, it’s as if gluons “radiate” other gluons or quarks, generating cascades of partons that
eventually hadronize into jets.




DO GLUONS CONTRIBUTE TO JET TAGGING?

1. Jets Initiated by Gluons

* Gluons, like quarks, can initiate a parton shower that leads to the formation of a jet.

* Gluon jets tend to have:
* Wider angular spread
* Higher particle multiplicity
* More diffuse energy distribution

» These features are used to distinguish gluon jets from quark jets—a key aspect of jet tagging.
2. Role in Hadronic Events
* In high-energy collisions (like at the LHC), gluons are often the initial partons in interactions.

* Their abundance in protons (especially at low momentum fraction, 1.e., low x) makes them central in hadronic
events.

» Additionally, during hadronization, gluons combine with quarks/antiquarks to form color-neutral hadrons.




GLUONS SHAPE JET MORPHOLOGY

In your context—event reconstruction in IceCube or jet classification using GNNs/QCNNs—
understanding how gluons shape jet morphology is crucial. For example:

* A gluon jet might mimic a top jet or a QCD background jet, complicating tagging.

* The structural differences between quark and gluon jets can be learned by neural networks
(classical or quantum) to improve discrimination.




IS THE GLUON A SIGNAL OR NOISE?

Connection to Your Work
In your case—jet classification using GNNs or QCNNs—the gluon can be:
« A signal, if you're trying to distinguish gluon jets from other types.

* Noise, if you're trying to isolate top-quark jets and want to suppress gluon jets that resemble
the signal.

In short, the gluon 1s ambivalent: it can be either a protagonist or a distractor, depending on
your experimental goal




OBSERVABLES ARE RANDOM VARIABLES”—WHAT IT MEANS

In high-energy physics experiments, observables like energy, momentum, and angular
distributions are not fixed values. Instead, they behave as random variables because:

» Each collision or event 1s governed by quantum mechanics and probabilistic interactions.

* Even under 1dentical initial conditions, the final state particles (and their measured properties)
can vary.

 What we measure—like the energy of a jet constituent or the angle between decay products—is
a sample from a probability distribution.
we mean that:

* Their values change from event to event.
* They follow statistical distributions (e.g., Gaussian, Poisson, or more complex ones).

* We use statistical inference to extract meaningful patterns or classify events (e.g., top vs QCD
jets).




WHAT IS A “STOCHASTIC PROCESS” IN THIS CONTEXT?

A stochastic process is the evolution of random variables over time or space. In particle physics:

» Each proton-proton collision (e.g., at the LHC) produces different outcomes, even under
similar initial conditions.

 Jet formation depends on quantum interactions, gluon emission, hadronization, and detector
effects—all of which have probabilistic components.

* Therefore, each jet is a unique realization of a process that can generate many different
configurations.

* Statistical inference: you're trying to deduce the nature of a jet from an observed sample.
* Probabilistic models: like neural networks that output probabilities.

* Metrics like AUC and cross-entropy: which evaluate inference over random variables.




PERFORMS STATISTICAL INFERENCE

Saying that a model “performs statistical inference” means that it is drawing probabilistic conclusions from
observed data, rather than making deterministic predictions. Here's what that implies in your context:
What Is Statistical Inference?

Statistical inference is the process of:

Estimating unknown parameters of a population (e.g., the probability that a jet 1s from a top quark)
Testing hypotheses (e.g., 1s this jet more likely to be QCD or top?)

Quantifying uncertainty in decisions (e.g., error margins, confidence intervals)
When a Model “Performs Statistical Inference”

In your case, a model like a CNN, QCNN, or GNN:
Receives random observables (energy, momentum, angular distributions)
Learns to map those observables to a probability of class membership (top vs QCD)

The output is not a binary answer, but a probability distribution—e.g., “this jet has a 92% chance of being from
a top quark”




WHAT DOES “THIS REFLECTS A MAXIMUM LIKELIHOOD ESTIMATION
APPROACH” MEAN?

This phrase means that the model is trying to find the parameters (or probabilities) that
maximize the likelihood of observing the given data—in other words, the parameters that make
the observed data most probable under the model.

What Is Maximum Likelihood Estimation (MLE)?

Definition: MLE 1s a statistical method that seeks the parameter values that maximize the
likelihood function:

8 = argmgax L@ | x)

Where;

* xx 1S the observed data (e.g., jet features)
* 0 are the model parameters (e.g., neural network weights)

» L(01]x) is the likelihood: how probable the data is given the parameters




IN YOUR MODEL

When your QCNN or GNN minimizes cross-entropy loss, it’s actually maximizing the log-
likelihood of the correct class labels. In other words:

» The model tries to assign high probabilities to the correct classes (top, QCD) for each event.

 This 1s exactly what MLE does: it finds the parameters that make the observed data most
likely.




PRECISION MEASUREMENTS

» Accurate jet classification improves measurements of cross sections, branching ratios, and top quark properties.
It also helps reduce systematic uncertainties in experimental analyses.

Searches for New Physics:

* Many BSM models predict top-rich final states.

 Efficient top tagging allows physicists to isolate rare events that could hint at new particles or interactions.
The paper explores whether Quantum CNNSs can outperform classical CNN's in this classification task—especially in
regimes where data is limited or the jet structure is complex.




WHY IS “WHY STATISTICS - INFERENCE” RELEVANT?

n top-quark tagging, we don’t observe the top quark directly, but only the products of its decay (b-
quark, W boson — leptons, neutrinos, jets). Therefore:

The observables (energy, momentum, angular distributions) are random variables.

The jets we observe are realizations of a stochastic process.

The dataset (e.g., JetNet) is a sample from a theoretical population of events.

The model (CNN, QCNN, GNN...) performs statistical inference: estimating the probability
that a given jet is of top-quark or QCD origin.




JETNET DATASETS

 Open-access datasets: Includes benchmark datasets like TopTagging, with labeled jets (e.g. top vs. QCD) and
particle-level features.

* Preprocessing utilities: Tools to convert raw jet data into formats suitable for ML, including jet images and particle
clouds.

* Model evaluation: Built-in support for comparing architectures like CNNs, GNNs, and QCNNs on standardized tasks.

* Integration with ML frameworks: Compatible with PyTorch and TensorFlow, making it easy to plug into existing
workflows.

Relevance to Your Work

In the paper you uploaded, JetNet’s TopTagging dataset is used to train both classical CNNs and quantum CNNs
(QCNNSs) to distinguish top-quark jets from QCD jets. The dataset includes jets in the hadronic channel, and
preprocessing steps (like PCA and Gram-Schmidt transformations) help reduce dimensionality and normalize jet images
for training.

If you're working on top-tagging with GNNs or quantum models, JetNet is a great starting point for benchmarking and
reproducibility.




SIGMA IN STATISTICS

» Sigma (o) is the symbol for standard deviation, which
measures how spread out the data are around the
mean.

* Saying 1o means you're considering a range that spans
one standard deviation above and below the mean.

Physical interpretation of the interval: Clarify that the
1o interval does not mean that pp has a 68% probability
of being in that range, but rather that the data are
statistically compatible with those values

® Practical interpretation of 1o

If your data follow a normal (Gaussian)
distribution, then:

Interval Percentage of data covered
pu+lo = 68.27% of the data
px2o =~ 95.45% of the data

ut3o = 99,73% of the data

So when your slide refers to a 68% confidence
inferval, it's equivalent to saying a 1o interval —
assuming the distribution of your estimator is

approximately Gaussian.




ACCURACYIT VS
STATISTICAL ACCURACY

Both domains rely on binary evaluations:

* In statistical inference, each trial (e.g., jet
classification) results in either a correct or incorrect
prediction — modeled as a Bernoulli trial
(success/failure).

* InIT monitoring, each system event (e.g., APl call,
database query) results in either a success or failure
— also a Bernoulli trial.

Accuracy as a Universal Metric:

AccuracylT=Number of successes/Total number of tri
als

This is the same formula whether you're
classifying jets or monitoring server uptime.
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