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Why Data–Monte Carlo Compatibility Matters — The Reality Check

● Physics Goal: Before any discovery or precision measurement, we must verify that our detector and simulations agree on 

what the world looks like.

● Benchmark Channel: The Z → μ⁺μ⁻ process — clean, well-understood, and sensitive to detector and modelling differences.

● The Question: Do our Monte Carlo templates truly represent what CMS recorded ?

● The Approach:

○ Start with simple shape tests (KS test)

○ Move to likelihood fits to extract scaling parameters

○ Iterative KS tests with new scaling parameters

○ Introduce shape morphing to test systematic effects

● End Goal: Build a statistically consistent bridge between simulation and reality.
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Data and Samples (Event Selection :Tag & Probe Method)
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Data DoubleMuon primary dataset in NANOAOD format from RunH of 2016

Signal Simulated dataset ZToMuMu_M-50To120_TuneCP5_13TeV-powheg-pythia8

Background-1 Simulated dataset TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8

Background-2 Simulated dataset WJetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8

Background-3 Simulated dataset ZZTo2L2Nu_TuneCP5_13TeV_powheg_pythia8

Background-4 Simulated dataset ZZTo4L_M-1toInf_TuneCP5_13TeV_powheg_pythia8

Tag & Probe Method: 
Event Selection:
• Event Trigger : HLT_IsoMu22_eta2p1

• MET pT > 40 GeV

• nMuon >= 2

Electron Veto:
• Good electron : [𝑝𝑇

𝑒 > 10 𝐺𝑒𝑉, 𝜂𝑒 <
2.5, 𝑛𝑜 𝜇 𝑤𝑖𝑡ℎ𝑖𝑛 Δ𝑅 = 0.4 ]

• If good electron, reject the event

Tag Selection:
• 𝑝𝑇

𝜇
≥ 24 𝐺𝑒𝑉

• 𝜂𝜇 < 2.1
• 𝑖𝑠𝑜𝜇 < 0.3
• 𝑡𝑖𝑔ℎ𝑡 𝑖𝑑 𝜇 = 1

Jet Veto:
• Good Jet : [𝑝𝑇

𝐽𝑒𝑡
> 30 𝐺𝑒𝑉, 𝜂𝐽𝑒𝑡 <

4.7, 𝑛𝑜 𝜇 𝑤𝑖𝑡ℎ𝑖𝑛 Δ𝑅 = 0.4 ]

• If  >3 good Jets, reject the event

Probe Selection:
• Probe_chrg * Tag_chrg < 0

• 𝜂𝜇 < 2.1
• 𝑀 𝜇𝑇𝑎𝑔𝜇𝑃𝑟𝑜𝑏𝑒 < 2000 𝐺𝑒𝑉

b-Jet Veto:
• Good b-Jet : [𝑝𝑇

𝐽𝑒𝑡
> 30 𝐺𝑒𝑉, 𝜂𝐽𝑒𝑡 <

4.7, 𝑛𝑜 𝜇 𝑤𝑖𝑡ℎ𝑖𝑛 Δ𝑅 = 0.4, 𝑏𝑡𝑎𝑔 ≥ 0.33 ]

• If good b-jet, reject the event.
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MC Normalization to Data Luminosity :
• MC samples are arbitrary number of events generated → randomize

mixture of random numbers

• Real Process Info. (Randomness in reality) corresponds to a known

Integrated Luminosity >> encoded in Data << MC (randomness

implemented to mimic reality) should be look similar to Data if we know the

process

• So, each MC event is assigned a weight = how many real events it

represents ?

• Otherwise, our understanding , = +

• General formula : 𝒘𝒆𝒗𝒆𝒏𝒕 = 𝒘𝒏𝒐𝒓𝒎 ⋅ 𝒈𝒆𝒏𝑾𝒆𝒊𝒈𝒉𝒕 ⋅ 𝒘𝑷𝑼 ⋅ 𝒘𝑺𝑭
𝝁𝝁
⋅ 𝒘𝒑𝒓𝒆𝒇𝒊𝒓𝒆

• Where, 𝒘𝒏𝒐𝒓𝒎 =
𝑳𝒅𝒂𝒕𝒂 𝒇𝒃−𝟏 ⋅𝝈 𝒇𝒃 ⋅𝝐⋅𝒌

σ 𝒘

• Ensures total MC yield matches expected yield for 8.74 fb⁻¹ (2016, 13 TeV)

Process Cross-section (𝒑𝒃) Events

Data ---- 5025648

Signal : 𝒁 → 𝝁+ + 𝝁− 2008.4 5412870.60

Bkg-1 : 𝐭 ҧ𝒕 → 𝟐𝝁 + 𝟐𝝂 88.29 7928.12

Bkg-2 : 𝐖+ 𝐉𝐞𝐭𝐬 → 𝝁 + 𝝂 61529.7 173500.67

Bkg-3 : 𝐙𝐙 → 𝟐𝝁 + 𝟐𝝂 0.564 155.67

Bkg-4 : 𝐙𝐙 → 𝟒𝝁 1.256 304.84



KS Test
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Data–MC Comparison: Kolmogorov–Smirnov (K-S) Test

A non-parametric statistical test used to compare two probability distributions ⇒ Draws

conclusion whether those two PDFs are drawn from the same underlying distribution or not.

● How it Works :

○ The test is based on empirical cumulative distribution functions (ECDFs).

○ For each PDF, the ECDF is given by : 𝑭𝒏 𝒙 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒅𝒂𝒕𝒂 𝒑𝒐𝒊𝒏𝒕𝒔 ≤ 𝒙

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒐𝒊𝒏𝒕𝒔∶ 𝒏

○ KS Test Statistics : 𝑫 = 𝒔𝒖𝒑
𝒙
[ 𝑭𝒏 𝒙 − 𝑭𝒎(𝒙)] = 𝐬𝐮𝐩

𝒙
[ 𝑭𝑫𝒂𝒕𝒂 𝒙 − 𝑭𝑴𝑪(𝒙)] i.e, the largest

vertical distance b/w 2 CDFs

○ P-value ≥ 0.05 → Good Agreement but P-value ≪ 0.05 → Significant Mismatch

● Why it matters :

○ Non-parametric, so no assumption about the form of distribution

○ Sensitive to difference in both location (mean shift) and shape (skew)

○ Used check Data-Monte Carlo agreement for generators and detector simulation validation

○ Comparison between different unfolding methods.
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Result : Data and MC differ notably around the Z-peak region → indicates modeling or detector bias → motivates fit-based approach.
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Kolmogorov–Smirnov (K-S) Test of different Observables
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Kolmogorov–Smirnov (K-S) Test : Scope of Improvement ??

• Made a 12% shift of bin-contents of to the consecutive left bins → Shape Improves !!

• Also the 𝜇𝑠𝑖𝑔 𝑎𝑛𝑑 𝛽
′𝑠 are ASSUMED to 1



Template Fit
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Template Fit Framework — Estimating Signal Strength 

● We have binned hist. Data and MC templated for process (Signal & Backgrounds)

● For each bin ( say in ith bin of mμμ histogram), the expected event is 𝝂𝒊 𝒎𝝁𝝁 = 𝝁𝒔 ⋅ 𝒔𝒊 𝒎𝝁𝝁 + σ𝒌 ∈𝒃𝒌𝒈𝒔
𝜷𝒌 ⋅ 𝒃𝒌,𝒊 𝒎𝝁𝝁

○ Where 𝒔𝒊, 𝒃𝒌,𝒊 are signal and background shape templates respectively ( MC yields per bin, possibly deformed by shape nuisances ϕ )
○ 𝝁𝒔 is the signal strength scaling ( parameter if interest)
○ 𝜷𝒌 is the background scaling factors ( can be treated as nuisance )

● Likelihood:

○ For observed count 𝑛𝑖, 𝑷 𝒏𝒊 𝝂𝒊) =
𝒆−𝝂𝒊 𝝂𝒊

𝒏𝒊

𝒏𝒊 !

○ 𝑳𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝝁𝒔 , 𝜷, 𝝓 = ς𝒊=𝟏
𝑵𝒃𝒊𝒏𝒔𝑷𝒐𝒊𝒔 𝒏𝒊 𝝂𝒊(𝝁𝒔 , 𝜷, 𝝓))

○ 𝑳𝒂𝒖𝒙𝒊𝒍𝒊𝒂𝒓𝒚(𝜼) = ς𝒌𝝅𝒌 𝜷𝒌 ⋅ ς𝒋𝝅𝒋 𝝓𝒋 ⋅ 𝑴𝑪 − 𝒔𝒕𝒂𝒕 𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔

■ 𝝅 𝜷𝒌 = ቊ
𝑵 𝟏, 𝝈𝒌 ( 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐶𝑜𝑛𝑠𝑡𝑟𝑖𝑎𝑛𝑡)

𝑳𝒐𝒈𝑵𝒐𝒓𝒎𝒂𝒍 𝟏, 𝝈𝒌 (𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒,𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)
■ With 𝝈𝒌 = 𝟎. 𝟏𝟎 → 𝟏𝟎% 𝒑𝒓𝒊𝒐𝒓 𝒖𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚

○ Full likelihood : 𝑳 𝝁𝒔 , 𝜷, 𝝓 = 𝑳𝒑𝒓𝒊𝒎𝒂𝒓𝒚 ⋅ 𝑳𝒂𝒖𝒙.

● Profiling :
○ To estimate 𝜇𝑠, profile all nuisances :

■ ෡ෝ𝜼 𝝁𝒔 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝜼

𝑳 𝝁𝒔, 𝜼 , ෞ𝝁𝒔, ෝ𝜼 = 𝒂𝒓𝒈𝒎𝒂𝒙
𝝁𝒔,𝜼

𝑳

■ This lets the data pull nuisances within their constrain, avoiding bias and giving realistic uncertainties.
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Constraints on Backgrounds to Nominal with Uncertainty, Singal is kept Free  

• We trust our background predictions

reasonably well; constrained with

Gaussian priors (σ = 10%)

• Only the main component = Signal float

freely

• Parameters ቊ
𝜇𝑠 [ 𝑓𝑟𝑒𝑒 𝑡𝑜 𝑓𝑙𝑜𝑎𝑡 ]

𝛽𝑘 [𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝜋 𝛽𝑘 ]

Allowing μₛ to float improves the overall shape agreement, but residual mismatch near Z-mass remains — hinting at small shape bias
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• KS test after fit:

• D = 0.0187, p = 0 → Data and MC still 

not statistically compatible

• Agreement improved but not perfect → 

likely due to mass-scale or shape 

modeling differences

Post-fit Validation : KS Test
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Shape Adjustment — 12 % Left Shift of Signal Template

[Testing possible mass-scale bias around Z peak ]

Goal: Investigate whether a small mass-scale 

bias in simulation can explain the Data–MC shape 

mismatch.

Approach:

• Shift the signal template by 12 % toward 

lower mass

• Keep backgrounds Gaussian-constrained (σ 

= 10 %)

• Allow μₛ (signal strength) to float freely

Interpretation:

• Fit quality improved compared to nominal

• KS test shows better Data–MC compatibility

Result: Applying a 12 % left shift aligns the Z 

peak and improves both fit and Data–MC 

consistency.
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• The KS p-value rises from ≈ 0 → 0.05, 

confirming better shape consistency.

• Indicates a small mass-scale mismatch

between Data and MC — corrected by 

shifting signal.

After shape adjustment, Data and MC are 

statistically consistent within 5 % level.

Post-fit Validation — Improved Data–MC Agreement



15Sayan Dhani | Data-MC Compatibility Test | University of Siena | 24/10/2025

Unconstrained Background Fit

Goal : Test whether freeing background

normalizations can improve the overall fit and

Data–MC agreement.

Setup:

• Backgrounds 𝛽1,2,3,4 allowed to float (some

unconstrained, some with 10% prior)

• Signal strength μₛ free to float

Interpretation:

• Fit still converges near μₛ ≈ 0.90

• Uncertainty increases as expected

• Backgrounds adjust within reasonable

physical range

• Expect further KS improvement

Result: Letting background yields float 

freely improves shape flexibility and slightly 

enhances post-fit agreement, without 

biasing μₛ.
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• Data–MC shape compatibility further

improved (p-value from 0.048 → 0.073).

• Confirms that allowing background flexibility

helps fine-tune modeling differences.

• μₛ remains stable → fit is statistically reliable.

With unconstrained backgrounds, Data and

MC are statistically consistent and stable

around μₛ ≈ 0.90.

Post-fit Validation — Improved Data–MC Agreement



Systematics Estimation
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Shape Systematics (Morphing)
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● Goal: Quantify residual shape uncertainty

in the signal using morphing between the

nominal and shifted templates.

● Concept: The morphed shape is built as a

linear combination of nominal and shifted

templates:

○ 𝒉𝒎𝒐𝒓𝒑𝒉𝒆𝒅 = 𝜶 ⋅ 𝒉𝒏𝒐𝒎𝒊𝒎𝒂𝒍 + 𝟏 − 𝜶 ⋅ 𝒉𝒂𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒆

○ 𝜶 =
𝟏

𝟐
𝟏 + 𝐭𝐚𝐧𝐡 𝒌𝜽 controls the deformation

strength.

● It captures possible detector or modeling

biases that shift or skew the signal shape.

Result : Applying a 12 % left shift aligns the Z 

peak and improves both fit and Data–MC 

consistency.
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No morphing : D = 0.0187, p = 0

No morphing but shift applied: D = 0.00141, p = 0.046

With morphing: D = 0.00145, p = 0.038

Slight improvement → residual shape mismatch

absorbed.

Morphing captures small residual shape systematics,

leading to marginally better Data–MC consistency

without altering μₛ.

Post-fit Validation — KS Test with Shape Morphing
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Visualizing Morphing

Nominal vs shifted templates show the Z-peak 

movement.

Morphed shapes interpolate smoothly between 

them.

Difference plots confirm that morphing 

introduces only minimal distortion, very less.

Morphing provides a smooth, data-driven way to incorporate shape uncertainties into the fit. It bridges between the nominal

and shifted signal templates, allowing the fit to marginalize over realistic shape variations.



Final Signal-Strength Estimate
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• The key message: μ̂s ≈ 0.903 ± 0.001 is consistent across all configurations.

• The Data–MC compatibility steadily improves, demonstrating that our modeling corrections genuinely 

fix the shape discrepancy.

Fit Configuration μ̂s ± Δμ KS D KS p-value Comment / Observation

Constrained Backgrounds 

(baseline)
0.9025 ± 0.0004 0.0716 ≈ 0.00 Poor shape match, MC Z-peak slightly off

12 % Shifted Signal 0.9035 ± 0.0004 0.00141 0.048 Better alignment around Z-peak

Unconstrained 

Backgrounds (robustness)
0.9037 ± 0.0013 0.00133 0.073 Background flexibility improves fit

Morphing (shape 

systematics included)
0.9033 ± 0.0004 0.00145 0.038 Residual mismatch absorbed by morphing



Discussion & Takeaways
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To wrap up :

• 𝑍 → 𝜇𝜇 serve as a good benchmark for validation of detector calibration and MC modelling

• The KS test offers a shape-level diagnostic, complementing likelihood-based fits.

• Step-wise modeling : from constraints → shift →  morphing :: systematically improves Data–MC agreement.

• The final μₛ result is robust to statistical and systematic choices.

• And this same workflow extends naturally to more complex analyses, from precision measurements to new-

physics searches.

• In essence: we’ve shown that careful statistical modelling — including both rate and shape systematics — can turn 

a simple benchmark process into a powerful validation tool for high-energy-physics analyses.

• Combining shape tests and likelihood fits provides a complete, data-driven validation of Monte Carlo 

models — an essential step for precision and discovery analyses.

My extra learnings:

• I learned to use brilcalc and golden JSON and normtag files to calculate the luminosity

• Learned about the RooFit, and RooStat etc fitting modules

• Leaned about the usage of Open-Data



Comments, Questions?



Thank                     you !!



Back-up



Data–MC Comparison: Kolmogorov–Smirnov (K-S) Test
A non-parametric statistical test used to compare two probability distributions ⇒ Draws conclusion whether

those two PDFs are drawn from the same underlying distribution or not.

● The test is based on empirical cumulative distribution functions (ECDFs).

● For each PDF, the ECDF is given by : 𝑭𝒏 𝒙 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒅𝒂𝒕𝒂 𝒑𝒐𝒊𝒏𝒕𝒔 ≤ 𝒙

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒐𝒊𝒏𝒕𝒔∶ 𝒏

● KS Test Statistics : 𝑫 = 𝒔𝒖𝒑
𝒙
[ 𝑭𝒏 𝒙 − 𝑭𝒎(𝒙)] = 𝐬𝐮𝐩

𝒙
[ 𝑭𝑫𝒂𝒕𝒂 𝒙 − 𝑭𝑴𝑪(𝒙)] i.e, the largest vertical distance b/w 2

CDFs

● Effective sample size : 𝑵𝒆𝒇𝒇 =
𝒏𝒎

𝒏+𝒎
, but our `Data` is unweighted but the `MC` is weighted ( not integer sample

size). So, 𝐧𝐌𝐂 =
(σ𝒋𝒘𝒋)

𝟐

σ𝒋𝒘𝒋
𝟐 , then 𝒏 = 𝒏𝑫𝒂𝒕𝒂 and 𝒎 = 𝒏𝑴𝑪

● P-value [ asymptotically ; large n ] : 𝒑 ≈ 𝑸𝑲𝑺 𝝀 = 𝟐 σ𝒌=𝟏
∞ −𝟏 𝒌−𝟏𝒆−𝟐𝒌

𝟐𝝀𝟐 where 𝝀 = 𝑵𝒆𝒇𝒇 𝑫

● So, if p=value is very low (→ 0), then samples drawn from different distributions OR, if p-value ≥ 0.05 (!!!), then

samples are consistent to each other.

● Non-parametric, so no assumption about the form of distribution

● Sensitive to difference in both location (mean shift) and shape (skew)

● Used check Data-Monte Carlo agreement for generators and detector simulation validation

● Comparison between different unfolding methods.
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Shape Systematics 12% left shift
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beta_k without any shift
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