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Hypothesis testing



Hypothesis testing

From a set of observables x we want to check if they support a specific hypothesis for our model H0 WRT another defined model H1

Models: H0: the patient does not have COVID, H1: the patient does have COVID

In the perfect world we like to build a statistics that have T(x) such that T(x)

T(x)=0 if H0 is true

T(x)=1 if H1 is true.

T(x)=1 => The test is significant; T(x)=0 => The test is not significant; 

In general 

P(T(x)=1 | H0) = α (False positive) - test size - to be chosen to be <<1

P(T(x)=0 | H1) = β  (False negative) 

1-β = Power(T) is the power of the test. We want the Power to be the biggest possible for a given test size



Hypothesis testing

Usually, when starting from a set of observables 
x1-xn, one builds a statistics t(x), such that 

p(s|H0) != p(s|H1)

Once the value of α (false positive rate) is fixed, 
one can define a T(t(x)) = bool(t in Critical 
region), where the critical region is defined such 
that Prob(t in Critical region | H0) = α

Typical values of α=0.05 or smaller

β is a function of α



What if H1 depends on a parameter

If x under H are described by p(x|H) which are not 
depending on free parameters, the hypothesis is SIMPLE.

If there is a dependence on the parameter, the hypothesis 
is COMPLEX.

It can frequently happen that we want to test the 
hypothesis m=m0, VS m>m0.

In this case, H0 is simple, H1 is complex.

What about α and β ?

α is always decided a priori, while β is a function of m.



Properties of a test

Unbiasedness: ∀m : powerT(m) ≥ α 
(very desirable) 

Consistency: ∀m : lim (N->inf) powerT(m) =1

Maximum power (MP): for simple hypothesis, the test T 
for which we get the maximum of the power

Uniformly most powerful (UMP): if exist a test T such that 
∀m powerT(m) > powerT'(m) ∀T' T is the preferred one

Local most powerful (LMP): 
T such that ∀m powerT(m) > powerT'(m) ∀T'
for m close to the value in H0.



Simple Hypotheses: Neyman-Pearson test

If H0 and H1 are simple hypotheses, the NP theorem demonstrates that the 
statistics

s=p(x|H0)/p(x|H1) and the critical region C: s<cα  give the MP test.

NOTE: if x follows H1 and not H0, we could expect p(x|H0)<p(x|H1) => small 
values of s => it make sense to reject H0 for small values of s.

In general, one has to calculate s, and p(s|H0) to find the value of cα

=> IF you have 2 simple hypotheses, NP test is the one to be used.



Simple Hypotheses: Neyman-Pearson test

a



Composite Hypotheses: LR test

If H0 and H1 are complex hypotheses but P(x| H0)= p(x,m=m0), P(x| H1)= p(x,m>m1), 

one can use λ= -2log(p(x|H0)/sup(p(x|H1)))

and a critical region C: λ>cα  

NOTE: if x follows H1 and not H0, we could expect p(x|H0)<sup p(x|H1) => large values of λ => it make sense to reject 
H0 for large values of λ.

In general, one has to calculate λ, and p(λ|H0) to find the value of cα

BUT: we know that asymptotically λ is distributed like a chi2 => extremely useful to get a fast asymptotic estimate 
of the qα

How many degrees of freedom? If general, one can extend the use of λ even for composite H0, and the degrees of 
freedom is the difference in the number of free parameters in the 2 hypotheses. 



When LR is the UMP

In general, one can demonstrate that if

the LR test is the UMP test. In this case, LR is a function of
so the test can be done directly on t(x).

NOTE: this is the exponential family, and t is the sufficient statistics!  



LMP test

The LMP test is important when a fast decision must be taken, even in the presence of small deviations from H0. 

We are just interested in getting the MP test very close to H0.

it can be demonstrated that the statistics based on the Fisher score calculated at m=m0, and an appropriate critical 
region, t>qα or t<qα gives the LMP

NOTE1: in general, there are 2 possible tests depending of which is the H1 we are considering (m>m0 or m<m0).

Under H0, the distributions of t are asymptotically gaussians with mean value 0, and variance = the Fisher information, if 
it exists.

Under H1 will be again a gaussian, but shifted and, usually, with a slight bigger variance.



What if ?

We assume that H0 = gaussian with mean value μ=0 and H1 gaussian with μ=μ1? 

The test is just done by looking at the value of the average. Let's say that we 
measured an average ~ 0 => We cannot reject H0.

BUT by plotting our data we got:



Goodness of fit



The need for a GOF

It is clear from the example above that testing H0 VS H1 is not the only way in 
which we would like to reject H0.

There must be another way of proceeding in which H0 is defined (the gaussian with 
μ=0 of the previous example), while we want to be as open as possible to any kind 
of alternative! 

We can still define a statistics T(x) such that PROB(T(x)=1 | H0) =α, but the concept of 
POWER is completely lost!

We do not have anymore UMP criteria to guide us in the selection of T

In fact, any T is ok, as soon as it is testinting some specific feature of H0.



p-value

To quantify the goodness of our model, 
we usually have 2 options:

● Define a statistics T such that T=0 or 1, with Prob(T=1|H0)=α as done for the HT
○ if T=1 we reject H0, with a confidence of 1-α=0.95 

● Define a statistics named p-value which gives a measure of the goodness of fit.

Definition: p-value is a statistics such that under H0 p(p-value ) = U(0,1)

Properties: Unbiased: for some of the alternatives hypothesis WRT H0, the 
distribution of the p-value should move towards smaller values of the p-value



Compilation of p-values

If we have more independent p-values (i.e. p1 and p2) and we want to combine them in a 
new p-value, there are more ways of doing it.

BUT the new p-value must still be distributed like U(0,1) under H0. 

SO IT CANNOT BE p=p1*p2

p is not uniformly distributed.

In general, one can use: 

Which is distributed like a chi2 with 2N degrees of 
freedom. The combined p-value is the chi2 percentile



chi2 distributions

From wikipedia



-2 Log p-value distribution

y(x) = -2 log x

x is the p-value so U(0,1)

py(y) ?

px(x(y)) = 1 (px is constant)

|dy/dx| = 2/x

py(y) = x/2

replace x with x(y) = e-y/2

py(y) = e-y/2/2 which is the chi2 with 2 
d.o.f.



Komlogorov - Smirnov

- 1 D problem with no free parameter
- We want to check if x1-xn are distributed like p(x|H0).
- F(x) is the cumulant for p(x|H0)
- We want to check if x1-xn are di where
-  
- The distribution of DN does not

depend on P, so one can calculate the critical region a-priori

can be used to compare two 
experimental distributions
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GOF with histograms

Let's assume we have a model p(x,μ) and we group the observables x1-xn in k bins.

If n is a stochastic variable distributed like a poissonian, the number of observation in each 
bin is distributed like a poissonian, and they are independent from each other.

The mean value of each poissonian in each bin i is fi(μ) and depends on the model p(x,μ). 

In this case  we have a natural alternative in to our model, in which the different fi are free 
parameters.

We can inherit a statistics from the HT: λ 

In this case, 



GOF  - Gaussian limit

If the statistics in each bin is large enough, the poissonians are approaching 
gaussian distributions.

In this case 

Chi2 test! 

Asymptotically distributed like a 
chi2 with nbins-dim(μ) DOF


