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Introduction
What is Information Geometry?

• What is Information Geometry? “A method of exploring
the world of information by means of modern geometry”[1],
basically the application of differential geometry to statistics

• A brief history of Information Geometry...

◦ C. R. Rao (1945) → Fisher matrix = Riemannian metric
◦ Further contributions in the following decades → H.

Jeffreys, B. Efron, N. N. Chentsov, S. Kullback, among
many others...

• Maturity has been reached by the work of S. Amari (1983)

• In 2018, Springer created the journal “Information
Geometry”



Differential Geometry in a Nutshell

• Differential geometry lies on the concept of manifold: an
m-dimensional manifold M is a topological space such that
each point p ∈ M admits a neighborhood and an
homeomorphism to Rm

→ E.g. Stereographic projection

• From this simple statement, we can naturally define
connection coefficients, covariant derivatives, the curvature
tensor, parallel transport, and other related concepts.

• General relativity is the best application of this

• But, let’s switch to statistics...



Statistical Manifold
Definition and Divergences

• Definition of Statistical Manifold:

M = {pξ = p(x ; ξ) | ξ = (ξ1, ..., ξm) ⊂ Rm}

with the “natural” homeomorphism φ(pξ) = ξ

• How to measure the discrepacy between two points pξ, pξ′?
We define a divergence D[ξ : ξ′] (not necessarily
symmetric). For example:

◦ Kullback-Leibler divergence

DKL[ξ : ξ
′] =

∑
i

p(xi ; ξ) log

[
p(xi ; ξ)

p(xi ; ξ′)

]
◦ Bregman divergence (for a convex function ψ(ξ))

Dψ[ξ : ξ
′] = ψ(ξ)− ψ(ξ′)−∇ψ(ξ′) · (ξ − ξ′)



Information Monotonicity
f-divergences

• On the manifold, we require two invariance principles

1) invariance under coordinate trasformation
2) Information Monotonicity [2]: let t = t(x) be a general

mapping between the sample spaces X and Y, then

D[p̄(t; ξ) : p̄(t; ξ′)] ≤ D[p(x ; ξ) : p(x ; ξ′)]

The equality holds if and only if t(x) is a sufficient statistics

• An important class of divergences is the f-divergence [3]

Df [ξ : ξ
′] =

∫
X
p(x ; ξ)f

(
p(x ; ξ′)

p(x ; ξ)

)
dx

where f is a convex function with f (1) = 0

◦ Any f-divergence satisfies the information monotonicity [4]
◦ Conversely, any decomposable information monotonic

divergence is written in the form of f-divergence [5]



Fisher metric
“Gauge” symmetries of an f-Divergence

• The f-divergence satisfies the following relations

1) For f̄ (u) = f (u) + c(u − 1) with c ∈ R, we have Df̄ = Df

2) For f → cf with c > 0, we have Dcf = c Df

• From the first symmetry, we fix f ′(1) = 0. In order to set
the scale, we assume f ′′(1) = 1. The resulting f-divergence
is called a standard f-Divergence

• Chentsov’s theorem[2]: Any standard f-divergence gives the
same Riemannian metric, the Fisher information metric
given by

gij = E
[
∂i log p(x ; ξ)∂j log p(x ; ξ)

]
where ∂i =

∂
∂ξi



A curiosity...
AdSN from a Multivariate Gaussian Distribution

• If we take the distribution

p({x i}; {µi}, {Λij}) =
exp

(
− 1

2Λij(x
i − µi )(x j − µj)

)√
(2π)N/2|Λ−1|

and compute the Fisher metric we get

ds2 = Λijdµ
idµj +

1

2
ΛikΛjldΛijdΛkl

where dim(M) = N(N + 3)/2

• For an isotropic distribution (Λij = σ2δij), the metric is
formally equivalent to the AdSN space (after a Wick
rotation and a conformal constant factor), i.e.

ds2 =
1

σ2
(
δijdµ

idµj + 2N(dσ)2
)



Let’s complicate a bit...
Amari-Chentsov triplet {M, gij ,Tijk}

• So far, we considered the object gij as a Riemannian metric.
To get a full and coherent picture of a manifold, we need to
relate it to a connection. Typically, one requires
⟨X ,Y ⟩ = ⟨ΠX ,ΠY ⟩

• Here, we requires ⟨X ,Y ⟩ = ⟨ΠX ,Π∗Y ⟩ where Π and Π∗ are
related to the connections Γijk and Γ∗ijk

• The quantity Tijk = Γ∗ijk − Γijk is called the Amari-Chentsov

tensor and it can be demonstrated that Γijk = Γ0ijk −
1
2Tijk

and Γijk = Γ0ijk +
1
2Tijk where Γ0ijk is the Levi-Civita

connection

• The triplet {M, gij ,Tijk} is called Amari-Chentsov structure



α-Geometry

• From a standard f-divergence we have the Fisher
information metric and

T
(α)
ijk = αTijk

with α = 2f ′′′(1) + 3 and
Tijk = E

[
∂i log p(x ; ξ)∂j log p(x ; ξ)∂k log p(x ; ξ)

]
• Hence, we have a family of α-connections Γ

(α)
ijk , Γ

(−α)
ijk which

are dually coupled to the Fisher metric

• The same geometry is derived from the α-divergence[6]

D(α)[ξ; ξ′] =
4

1− α2

(
1−

∫
X
p(x ; ξ)

1−α
2 p(x ; ξ′)

1+α
2 dx

)
• Anyway, the application of the tensor Tijk is still unknown...



An application of α-Geometry
2D anisotropic Ising model[7] pt. 1

• Let’s consider the 2D anisotropic Ising model
H(σ) = −J

∑N
i ,j=1 σi ,jσi+1,j − K

∑N
i ,j=1 σi ,jσi ,j+1

• At the equilibrium, we have P(σ) = Z−1e−βH(σ)

• Recall that, the canonical distribution arises by minimizing
the Kullback-Leibler divergence (α = 1) with the constraint
on the energy

• Since lnZ is the potential, by computing the curvature with
α = 1 we find R(1) = 0

• BUT...with α = 0 (Levi-Civita connection), the curvature
does not vanish...



An application of α-Geometry
2D anisotropic Ising model[7] pt. 2

This curvature R(0) correctly captures the phase transition and
the divergence is the Hellinger distance

D[p : q] =
∑

i

(√
pi −

√
qi

)2
...why this?



Deep Neural Networks
A very compact introduction

• Deep learning is based on neural networks. What are neural
networks?

• Basically, given an input layer with N neurons
x = (x1, . . . , xN), L hidden layers with nl neurons for
l = 1, L, and an output layer with M neurons
y = (y1, . . . , yM), a neural network computes the numbers

z
(l)
i =

nl−1∑
j=1

w
(l)
ij φ

(l−1)(z
(l−1)
j ) + b

(l)
i , i = 1, nl , l = 1, L

where yi = φ(out)
(∑nL

j=1 w
out
ij φ(L)(z

(L)
j ) + bouti

)
• The computational complexity increases with the number of
hidden layers and related parameters w and b

• Chat-GPT 3 uses about 175 billion of parameters



Deep Learning
What does “Learning” mean?

• We want the output yi = yi (x ;w , b) to be as close as
possible to a desired result ỹi . The loss function L(w , b)
quantifies the discrepacy, for instance

L(w , b) = 1

Ndata

∑
x

||yi (x ;w , b)− ỹi ||2

• As an example, let’s consider a program that recognizes
handwritten digits. Here, the input x would be the
grayscale values of the pixels, while the output y would be
an array of 10 probabilities, each corresponding to a digit
from 0 to 9.

• The “Learning” essentially involves the minimization of L



Minimization of L
Stochastic Gradient Descent

• Parameters ξ0 = (w0, b0) are randomly generated at time
t = 0. Then, they are updated according to

ξt+1 = ξt − ηt∇L(ξt)

where ηt is the learning rate (generally depending by the
epoch t). This is the so called batch learning procedure

• Typically, when the data set is big, we can estimate the
gradient using a small sample of randomly chosen training
inputs

• Since L(ξ) =
∑

x L(y(x ; ξ)), the so called on-line learning
procedure modifies ξt according to

ξt+1 = ξt − ηt∇L(y(x ; ξt))

• Everything seems perfect, but... gradient descent could get
stuck in local minima



What about Information Geometry?
Neural Manifold

• Learning takes place in a parameter space that is not
Euclidean in general

• In this framework we have the natural gradient descent[8]

ξt+1 = ξt − ηtG
−1(ξt)∇L(ξt)

• Anyway, the choice of ηt is crucial. A good choice is to use
an adaptive learning rate given by the stochastic
approximation

∑
t ηt >∞

∑
t η

2
t <∞ (for instance

ηt = µ/t)

• In the on-line procedure and with ηt = µ/t, the natural
gradient descent is Fisher efficient, i.e. the Cramér-Rao
bound is attained asymptotically



Let’s go to practice...
Noisy Networks pt. 1

• Imagine to have an input signal x , distributed according to
some q(x), and a teacher signal given by y = φ(x ; ξ) + ϵ,
where ϵ is some random noise (typically gaussian). The
training sample is D = {(xi , yi ), i = 1,T}

• The joint probability is
p(x , y) = q(x)P(y |x) = q(x)Pϵ(y − φ(x ; ξ)) and we can
define an instantaneous loss as L(xi , yi ; ξ) = − logPϵ

• Minimizing L is equivalent to maximizing the log-likelihood

• The Fisher metric is gij(ξ) = Eq[∂iφ(x ; ξ)∂jφ(x ; ξ)]. We
could approximate it as gij(ξ) ≈ 1

T

∑
t ∂iφ(xt ; ξ)∂jφ(xt ; ξ)



Let’s go to practice...
Noisy Networks pt. 2 (Jupyter Code: Noisy Network)

This is the case with dim x = 20 input neurons, no hidden layer
and one output neuron.



Let’s go to practice...
Noisy Networks pt. 3 (Jupyter Code: Noisy Network (1 hidden layer))

This is the case with dim x = 20 input neurons, 1 hidden layer
with hidden dim = 10 neurons and one output neuron.



Conclusions

• Information Geometry is a promising research field. The
Ising model example suggests the possibility of going
beyond the “canonical” statistical mechanics

• There are approaches that generalise the entropy, for
instance, the Tsallis Entropy and the Rényi Entropy

• AI is conquering the world, and Information Geometry
provides it with more efficient ways to do so...



Thank you for your attention!
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