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Introduction
What is Information Geometry?

What is Information Geometry? “A method of exploring
the world of information by means of modern geometry”[1],
basically the application of differential geometry to statistics
A brief history of Information Geometry...

o C. R. Rao (1945) — Fisher matrix = Riemannian metric

o Further contributions in the following decades — H.
Jeffreys, B. Efron, N. N. Chentsov, S. Kullback, among
many others...

Maturity has been reached by the work of S. Amari (1983)

In 2018, Springer created the journal “Information
Geometry”



Differential Geometry in a Nutshell

o Differential geometry lies on the concept of manifold: an
m-dimensional manifold M is a topological space such that
each point p € M admits a neighborhood and an
homeomorphism to R"™
— E.g. Stereographic projection

e From this simple statement, we can naturally define
connection coefficients, covariant derivatives, the curvature
tensor, parallel transport, and other related concepts.

e General relativity is the best application of this

e But, let's switch to statistics...



Statistical Manifold

Definition and Divergences

e Definition of Statistical Manifold:

M ={pe=p(x: &&= (& ....&") CR™}

with the "natural” homeomorphism ¢(ps) = &

e How to measure the discrepacy between two points p¢, per?
We define a divergence D[¢ : £'] (not necessarily
symmetric). For example:

o Kullback-Leibler divergence

Dri[§: €] = ZP(XH@ log {p(X";g)]

p(xi;¢')
o Bregman divergence (for a convex function ¢(¢))

Dyl¢ : €T= () = v(&) = V(&) - (€ =€)



Information Monotonicity
f-divergences

e On the manifold, we require two invariance principles

1) invariance under coordinate trasformation
2) Information Monotonicity [2]: let t = t(x) be a general
mapping between the sample spaces X and ), then

DI[p(t:€) - p(t; €)] < Dlp(x; €) : p(x; &)

The equality holds if and only if t(x) is a sufficient statistics

e An important class of divergences is the f-divergence [3]

Del¢: €] = /X Pl ) <I;(()><<;?§))> >

where f is a convex function with f(1) =0
o Any f-divergence satisfies the information monotonicity [4]
o Conversely, any decomposable information monotonic
divergence is written in the form of f-divergence [5]




Fisher metric
“Gauge" symmetries of an f-Divergence

e The f-divergence satisfies the following relations
1) For f(u) = f(u) + c(u — 1) with ¢ € R, we have D7 = Dy
2) For f — cf with ¢ > 0, we have D = ¢ Dy

e From the first symmetry, we fix (1) = 0. In order to set
the scale, we assume f”(1) = 1. The resulting f-divergence
is called a standard f-Divergence

e Chentsov's theorem|[2]: Any standard f-divergence gives the
same Riemannian metric, the Fisher information metric

given by
g = E[0; log p(x; €)0; log p(x; €)]

where 0; = a%f



A curiosity...
AdSN from a Multivariate Gaussian Distribution

e If we take the distribution

exp(— 3Ni(x' — p)(x — 1))

P} (A }) = Gr) VAT

and compute the Fisher metric we get
T
ds® = Njdu'dp + E/\'k/\f’ dN\jdMy

where dim(M) = N(N + 3)/2

e For an isotropic distribution (A; = 0§;;), the metric is
formally equivalent to the AdS" space (after a Wick
rotation and a conformal constant factor), i.e.

1 .
ds? = — (G5du'dp! + 2N(do)?)



Let's complicate a bit...
Amari-Chentsov triplet { M, gj;, Ti}

e So far, we considered the object gj; as a Riemannian metric.
To get a full and coherent picture of a manifold, we need to
relate it to a connection. Typically, one requires
(X,Y)=(NX,ny)

e Here, we requires (X, Y) = (MX,M*Y) where 1 and M* are
related to the connections 'y and I,

e The quantity Tjj = FZ.k — [ji is called the Amari-Chentsov
tensor and it can be demonstrated that [';; = Ff-j-k — 3Tk
and [y =T + 3 Tijk where [ is the Levi-Civita
connection

e The triplet {M, gjj, Tji} is called Amari-Chentsov structure



a-Geometry

e From a standard f-divergence we have the Fisher
information metric and

T = aTy

with o = 2f"(1) + 3 and
Tijk = E [0 log p(x; £)9; log p(x; £)Ok log p(x; £)]

e Hence, we have a family of a-connections I’Eﬁ(), I_,(.j;a) which
are dually coupled to the Fisher metric

e The same geometry is derived from the a-divergence[6]

D[ €] =

1 —4042 (1 - /X p(x:€) 7" plx; 5’)”T“dx)

e Anyway, the application of the tensor T is still unknown...



An application of a-Geometry
2D anisotropic Ising model[7] pt. 1

e Let's consider the 2D anisotropic Ising model
Ho) = —J 3Ny oijoirn— KNy 0ijoiji

e At the equilibrium, we have P(¢) = Z~1e=#H(9)

e Recall that, the canonical distribution arises by minimizing
the Kullback-Leibler divergence (o = 1) with the constraint
on the energy

e Since In Z is the potential, by computing the curvature with
a=1we find RY) =0

e BUT...with @ = 0 (Levi-Civita connection), the curvature
does not vanish...



An application of a-Geometry
2D anisotropic Ising model[7] pt. 2

This curvature R(®) correctly captures the phase transition and
the divergence is the Hellinger distance

2
Dlp:q]l=>"; <\/E - ﬁ) ...why this?



Deep Neural Networks
A very compact introduction

e Deep learning is based on neural networks. What are neural
networks?

e Basically, given an input layer with N neurons
x = (x,...,xN), L hidden layers with n; neurons for
/=1, L, and an output layer with M neurons

y =(y',...,¥M), a neural network computes the numbers

ni_1

zi(/) Z (), (1= 1)( (I- ))+b1(/), i=1m =11
j=1
where y; = g0(°“t)(z OutsD(L)( (L)) + bout)

e The computational complexity increases with the number of
hidden layers and related parameters w and b

e Chat-GPT 3 uses about 175 billion of parameters



Deep Learning

What does “Learning” mean?

e We want the output y; = yi(x; w, b) to be as close as
possible to a desired result y;. The loss function £(w, b)
quantifies the discrepacy, for instance

1

data

L(w,b) = N ZHyi(X; W,b)—yin
X
e As an example, let's consider a program that recognizes
handwritten digits. Here, the input x would be the
grayscale values of the pixels, while the output y would be

an array of 10 probabilities, each corresponding to a digit
from 0 to 9.

e The "Learning” essentially involves the minimization of L



Minimization of £
Stochastic Gradient Descent

e Parameters &y = (wp, bp) are randomly generated at time
t = 0. Then, they are updated according to

Ser1 =&t — UtVC(ft)

where 7 is the learning rate (generally depending by the
epoch t). This is the so called batch learning procedure

e Typically, when the data set is big, we can estimate the
gradient using a small sample of randomly chosen training
inputs

e Since L(§) =, L(y(x;&)), the so called on-line learning
procedure modifies &; according to

Eer1 =& — e VL(y(x:6¢))

e Everything seems perfect, but... gradient descent could get
stuck in local minima



What about Information Geometry?
Neural Manifold

e Learning takes place in a parameter space that is not
Euclidean in general

e In this framework we have the natural gradient descent[8]

Cer1 =& — G H(E)VL(E)

e Anyway, the choice of 7; is crucial. A good choice is to use
an adaptive learning rate given by the stochastic
approximation >, m; > o0 Y., n? < oo (for instance
e = p/t)

e In the on-line procedure and with n; = p/t, the natural
gradient descent is Fisher efficient, i.e. the Cramér-Rao
bound is attained asymptotically



Let's go to practice...
Noisy Networks pt. 1

e Imagine to have an input signal x, distributed according to
some ¢(x), and a teacher signal given by y = p(x;&) + ¢,
where € is some random noise (typically gaussian). The
training sample is D = {(x;,y;),i =1, T}

e The joint probability is
p(x,y) = a(x)P(ylx) = a(x)Pe(y — #(x;£)) and we can
define an instantaneous loss as L(x;, y;; ) = — log Pe

e Minimizing L is equivalent to maximizing the log-likelihood

e The Fisher metric is gjj(§) = Eq[0i¢(x; £)0jp(x; €)]. We
could approximate it as gj;(§) & + 3, dip(xe; €)0j0(xe; €)



Let's go to practice...
Noisy Networks pt. 2 (Jupyter Code: Noisy Network)

This is the case with dim_x = 20 input neurons, no hidden layer
and one output neuron.

1.6 \ —— Natural Gradient Descent

——— Standard Gradient Descent
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Let's go to practice...
Noisy Networks pt. 3 (Jupyter Code: Noisy Network (1 hidden layer))

This is the case with dim_x = 20 input neurons, 1 hidden layer
with hidden_dim = 10 neurons and one output neuron.

W —— Natural Gradient Descent

10 4 —— Standard Gradient Descent

Loss

0 25 50 75 100 125 150 175 200
Epochs



Conclusions

e Information Geometry is a promising research field. The
Ising model example suggests the possibility of going
beyond the “canonical” statistical mechanics

e There are approaches that generalise the entropy, for
instance, the Tsallis Entropy and the Rényi Entropy

e Al is conquering the world, and Information Geometry
provides it with more efficient ways to do so...



Thank you for your attention!

Lucio De Simone
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