Statistical methods for the search for CP violation in $D^0 \to K_S^0 K^{\pm} \pi^{\pm}$ decays

Francesco Paciolla

Statistics – 17 December 2024 PhD Fisica 39° ciclo

Overview

Topics:

- CP symmetry and violation
- The $D^0 \to K_S^0 K^\mp \pi^\pm$ decay
- The data sample
- The PDF
- The Amplitude Model
- Hypothesis testing (LMP, test statistic, properties)
- Point estimation (MM, estimator, properties)
- Monte Carlo

Disclaimer

This is a simplified version of the actual analysis. The following topics won't be analysed in full details

- RS and WS decay channel difference
- Systematic uncertainties
- Background
- **Efficiency**
- Parameters cross-talk

• Resonances

$\mathcal{C}P$ symmetry

It is defined as the **invariance of fundamental interactions** under the combined symmetry transformations of **charge conjugation ()** and **parity inversion ()**

$\mathcal{C}P$ violation

Laws of physics are NOT the same if a **particle** is interchanged with the corresponding **antiparticle** while its spatial **coordinates are inverted**

$\mathcal{C}P$ symmetry

It is defined as the **invariance of fundamental interactions** under the combined symmetry transformations of **charge conjugation ()** and **parity inversion ()**

$\mathcal{C}P$ violation

In short: **particles** and **antiparticles** behave differently

$\mathcal{C}P$ symmetry

It is defined as the **invariance of fundamental interactions** under the combined symmetry transformations of **charge conjugation ()** and **parity inversion ()**

 $\mathcal{C}P$ violation

In short: **particles** and **antiparticles** behave differently

The $D^0 \to K^0_S K^\mp \pi^\pm$ decay channel

Note:

- They are **three-body decays**
- Can be **displayed** by a **Dalitz Plot**
- May present **resonances**

The data sample

Data sample

- LHCb Run 2 (2016-2018)
- $N = 900K$ events
- Background $< 4.5\%$
- **Toy data** (analysis is blinded)
- **Many** interfering **resonances**

The data sample

The data sample

Statistics – PhD 39° ciclo $\hskip1cm \vert$ Statistical methods for the search for ${\it CP}$ violation in $D^0 \to K^0_S K^\mp \pi$

The $PDF:$ derivation

The $PDF:$ derivation

The *PDF*

 α

The red terms can be interpreted as a **Bernoulli distribution** where α is the success probability $f(q; \alpha) = \alpha$ $1+q$ $\overline{2}^-(1-\alpha)$ $1-q$ 2 $P(D^0) = \alpha$ $P(\overline{D}^0) = 1 - \alpha$

$p(x|q)$

The green terms are the **flavour specific PDF** of the data Dalitz plot distribution

> $p_{\Omega}(x|q = +1) = p(x|D^0)$ $p_{\Omega}(x|q = -1) = p(x|\overline{D}^{0})$

To be defined

Statistics – PhD 39° ciclo $\hskip1cm \vert$ Statistical methods for the search for ${\it CP}$ violation in $D^0 \to K^0_S K^\mp \pi$ 17 December 2024 $5/16$

The PDF : amplitude model from LHCb Run 1

LHCb collaboration, R. Aaij et al., "*Studies of the resonance structure in* $D^0\to K_S^0K^\mp\pi^\pm$ *decays",* [\[PRD.93.052018\]](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.052018)

The $PDF:$ flavour specific $PDFs$

CPV parameters

The amplitude model can be re-parametrized using

$$
p_{\Omega}(x|q) \equiv p_{\pm}(x;\vec{\theta}) = \varepsilon(x) \left| \sum_{R} a_{R}(1 \pm \Delta a_{R}) e^{i(\phi_{R} \pm \Delta \phi_{R})} \mathcal{M}_{R}(x) \right|^{2}
$$

$$
\left\{\frac{D^0}{\overline{D}^0} \to +\right.
$$

So, $\vec{\theta} = (\Delta a, \Delta \phi)_R$ are the set of **CP-violating parameters**.

- A search for CPV must deal with these $2N_R$ parameters
- A_{CP} is a function of $\vec{\theta} = (\Delta a, \Delta \phi)_R$

Linear approximation

Since CPV is expected to be small, the $p_{\pm}(x; \vec{\theta})$ can be expanded in $\vec{\theta} = \vec{0}$ as $p_{\pm}(x;\vec{\theta}) = f(x) \pm \sum$ $\chi{\in}\theta$ $\chi g_\chi(x) + O(\vec{\theta}^2)$

where

$$
f(x) \equiv p_{\pm}(x; \vec{\theta})\Big|_{\vec{\theta} = \vec{0}} = p(x; \vec{0}) \qquad g_{\chi}(x) \equiv \frac{\partial}{\partial \chi} p_{\pm}(x; \vec{\theta})\Big|_{\vec{\theta} = \vec{0}}
$$

 Ω

The $PDF:$ final form

PDF

$$
\overline{p(q, x; \alpha, \vec{\theta})} = \{ \alpha p_{+}(x; \vec{\theta}) \}^{\frac{1+q}{2}} \{ (1-\alpha) p_{-}(x; \vec{\theta}) \}^{\frac{1-q}{2}}
$$

- $q = \text{flavour } D^0$ and $q \in \{\pm 1\}$
- $x =$ Dalitz plot position and $x \in \Omega$
- $\alpha =$ global asymmetry and $\alpha \in [0,1]$
- $p_{\pm}(x;\vec{\theta}) = f(x) \pm \sum_{\chi \in \vec{\theta}} \chi g_{\chi}(x)$ linear approximation

Goal

The **search for CP** violation may be carried out through:

- **Hypothesis testing**
- **Point estimation** of $\vec{\theta} = (\Delta a, \Delta \phi)_R$

Hypothesis test

Hypothesis testing: LMP test

Hp. test

The search for CPV can interpreted as a **hypothesis test**

- $H_0 = CP$ conservation $\vec{\theta} = \vec{0}$
- $H_1 = CP$ violation $\vec{\theta} \neq \vec{0}$

Considering that:

- H_1 depends on $\vec{\theta}$ and is not simple
- Predictions say $\mathbf{CPV}\sim0$

the most convenient test is the **Locally Most Powerful** (**LMP**) test

LMP test

- It can be used when $H_0 \sim H_1$
- It is the **most powerful test** $\forall \vec{\theta} \in I\big(\vec{\theta}_0\big)$
- For a data set \vec{X} of N observations, **the test statistic** is

$$
t_{\chi}(\vec{X}) = s(\chi) \Big|_{\vec{\theta} = \vec{0}} = \frac{\partial}{\partial \chi} \log \mathcal{L}_{\vec{X}}(\vec{\theta}) \Big|_{\vec{\theta} = \vec{0}} \quad \forall \chi \in \vec{\theta}
$$

Hypothesis testing: test statistic

Likelihood

$$
L_X(\vec{\theta}, \alpha) = {\alpha L_+(\vec{\theta}|x)}^{\frac{1+q}{2}} \{(1-\alpha)L_-(\vec{\theta}|x)\}^{\frac{1-q}{2}}
$$

- $\mathcal{L}_{\pm}(\vec{\theta}|x) = f(x) \pm \sum_{\chi \in \vec{\theta}} \chi g_{\chi}(x)$ linear approximation
- $\vec{\theta} \in I(\vec{\theta}_0 = \vec{0})$ and $\alpha \in [0,1]$

Hypothesis testing: properties

The test statistic
$$
t_{\chi}(\vec{X})
$$
 is
\n
$$
t_{\chi}(\vec{X}) = \sum_{i=1}^{N} q_i \frac{g_{\chi}(x_i)}{f(x_i)}
$$
\n
$$
\underbrace{\text{t}_{thr}(\alpha)}_{+\infty}
$$
\nAt fixed α , the threshold $t_{thr}(\alpha)$ is given by\n
$$
\int_{t_{thr}(\alpha)}^{\infty} p(t_{\chi}|H_0) dt_{\chi} = \alpha
$$
\n
$$
\underbrace{\text{a is the} \atop \text{significance}}_{\text{level}}
$$

At given χ , he power $pow(\chi)$ is given by $pow(\chi) = \int p(t_{\chi}|H_1) dt_{\chi}$ $t_{thr}(\alpha)$ $+\infty$

Statistics – PhD 39° ciclo $\hskip1cm \vert$ Statistical methods for the search for ${\it CP}$ violation in $D^0 \to K^0_S K^\mp \pi$

Point estimation

Point estimation: MM estimator

Given the complexity of the $p\big(q, x; \alpha, \vec{\theta}\big)$

- the Maximum Likelihood Estimator (**MLE**) is **unfeasible**
- the Method of Moments (**MM**) could be **useful**

Method of Moments

MLE vs MM **In its most general form, the MM states that**

if $\forall \chi \in \vec{\theta}$ ∃**Var** $\lfloor t_\chi(x)\rfloor$ and it is finite $h_\chi(\vec{\theta})\equiv{\rm E}\big[t_\chi(x)$ ∃ h_{χ}^{-1} inverse of $h_{\chi}(\vec{\theta})$ at least ∀ $\vec{\theta} \in I\big(\vec{\theta}_0\big)$ then any $\chi \in \vec{\theta}$ can be estimated using the **estimator** defined as $\hat{t}_{\chi}(\vec{X}) = h^{-1}\left(\frac{1}{N}\right)$ \boldsymbol{N} \sum \boldsymbol{N} $t_{\chi}(X_i)$

 $i=1$

MLE vs MM

Given the complexity of the $p\big(q, x; \alpha, \vec{\theta}\big)$

- the Maximum Likelihood Estimator (**MLE**) is **unfeasible**
- the Method of Moments (**MM**) could be **useful**

Method of Moments

In its most general form, **the MM states that**

if $\forall \chi \in \vec{\theta}$ ∃**Var** $\lfloor t_\chi(x)\rfloor$ and it is finite $h_\chi(\vec{\theta})\equiv{\rm E}\big[t_\chi(x)$ ∃ h_{χ}^{-1} inverse of $h_{\chi}(\vec{\theta})$ at least ∀ $\vec{\theta} \in I\big(\vec{\theta}_0\big)$ then any $\chi \in \vec{\theta}$ can be estimated using the **estimator** defined as $\hat{t}_{\chi}(\vec{X}) = h^{-1}\left(\frac{1}{N}\right)$ \boldsymbol{N} \sum \boldsymbol{N} $t_{\chi}(X_i)$

 $i=1$

LMP statistic

Point estimation: estimator

Estimator

Define
$$
A \equiv (A_{\chi\psi})_{\chi,\psi \in \vec{\theta}}
$$
 and $B \equiv (B_{\chi\psi\xi})_{\chi,\psi,\xi \in \vec{\theta}}$, the **MM estimator** is given by
\n
$$
\hat{t}_{\chi}(\vec{X}) = \frac{1}{N} A_{\chi\psi}^{-1} \sum_{i=1}^{N} q_i \frac{g_{\psi}(x_i)}{f(x_i)} \qquad \bullet \quad E[\hat{t}_{\chi}] = \theta_{\chi}
$$
\n
$$
\text{Cov}[\hat{t}_{\chi}, \hat{t}_{\psi}] = \frac{1}{N} A_{\chi\psi}^{-1} [A_{\chi\psi} + (2\alpha - 1) B_{\chi\psi\xi} \theta_{\xi}] (A_{\chi\psi}^{-1})^T - \frac{1}{N} \theta_{\chi} \theta_{\psi}
$$

Properties

The estimator is

- Asymptotically normally distributed
- Consistent
- Unbiased
- Highly efficient $(\varepsilon > 91\%)$
- Properties proved analytically

Good Estimator!

Point estimation: Monte Carlo simulation

Method

- 1. Inject CPV in the model through a selected $\chi \in \vec{\theta}$
- 2. Generate two random samples $S_+(D^0)$ and $S_-(\overline{D}{}^0)$
- 3. Evaluate \hat{t}_{θ} using its definition

$$
\hat{t}_{\chi}(\vec{X}) = \frac{1}{N} A_{\chi\psi}^{-1} \sum_{i=1}^{N} q_i \frac{g_{\psi}(x_i)}{f(x_i)}
$$

- 4. Repeat 5000 times to obtain $p(\hat{t}_\chi;\alpha ,\vec{\theta }$
- 5. Vary χ and α over the expected theoretical and experimental ranges

Example

- $\chi=\Delta\phi_{K*(892)^0}$
- Same results for other parameters

Point estimation: Monte Carlo Simulation

Results

The numerical analysis validates the estimator's properties:

- The **asymptotic normality** of $p\big(\hat{t}_\chi;\alpha,\vec{\theta}\big)$ implies \hat{t}_χ **consistency**
- The **linear** fit coincides with the bisector. This implies \hat{t}_γ **unbiasedness**
- The variance obtained from the fit is equal to the analytical prediction. The \hat{t}_χ **high efficiency** is confirmed
- The $E[\hat{t}_\chi]$ shows **no dependence** from the global asymmetry α

Example

- $\chi = \Delta \phi_{K*(892)^0}$
- Same results for other parameters

Thank you for your attention