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The Equations of Stellar Evolution

P Isolation in space: their structure depends only on intrinsic
properties (mass and composition)

» Spherical symmetry:
dm(t,r) = 4nr’pdr — 4xwr’p v dt

Departure from spherical symmetry can arise from rotations
and magpnetic fields, but typically (e.g. the Sun)

{ Eot _ Muw?R? ~D. 1075

Egrav - GM2/R

Unmagn B? _
Egravjv = GMZ/;L:‘%“ ~ 10 10 (fOI’ B = 1T)




Full Set of Equations

» The stellar structure is determined by solving simultaneously
the equations

OP/0r = (Hydrodynamics equation)
Om/0r = (Continuity equation)
OL/Or =  (Energy conservation)
0T /0r = (Transport equation)

Xi= H -
0 })}l’N = (Equations for the composition)

» Together with finite equations (equation of state, opacity,
energy production, etc.)

» 4 + N partial differential equations for 4 + N unknown

variables (m, p, T, L and X;) in functions of independent
variables t and r



The role of time

» Time appears in

» Hydrodynamics equation — 9%r/dt?> — changes in the
mechanical structure — timescale

Tayn ~ 10°\/(R/R5)3 (Mo /M)s

> Energy conservation — 9s/Jt — changes in the thermal
structure — timescale

n ~ 10%(M/Meo)*(Ro/R)(Le /L)s

» Equations for the composition — 9X;/0t — changes in the
composition — timescale

Toue = 101 (M/Mg)(Lo/L)s (e.g. hydrogen burning)

— Thuc > TKH > Tdyn



Complete Equilibrium

» Since Thuc > TKH > Tdyn, Xi(t) = Xi(to) (and we assume
uniform initial composition)

» Hydrostatic equilibrium (8%r/0t?> = 0) + thermal equilibrium
(0s/0t = 0) = “Complete Equilibrium”

» Partial derivatives become ordinary derivatives and the
quantities depend only on r

» Suitable boundary conditions (e.g. central and surface
conditions)



Polytropic Models

» Mechanical equations are coupled to the “thermo-energetic”
equations through the pressure P = P(p, T)

» For simple model P = P(p) they decouple

» Polytropic Model P = Kp” with K polytropic constant and ~
polytropic exponent (also defined as v =1+ % with n
polytropic index)

> K can be fixed from natural constants or can be a free
parameter

> A simple case is the homogeneous gaseous sphere with
p=K'PYand n=0 (y = +o0)



Lane-Emden Equation

» By defining the dimensionless variables £ and 6 as r = & and
p = pcB" we get the Lane-Emden equation

1d [ ,do . . (n+1)KptHHn
£ 4 <£ d§>+9 0 with « 147G

» As boundary conditions, we require p(0) = p. and p’(0) =0
inr=0,ie 6(0)=1and #"(0)=0in&=0
» The radius is determined by R = a&p

» Actually, we could implicitly have the third condition
p(R) =0 if we assume P(R) ~ 0, i.e. () =0




General Properties of the Solutions

» Only for n =0,1 and 5 analytical solutions exist

» For n < b5 the solution admits finite radius and finite total
mass

» For n =5 the solution admits infinite radius but finite total

mass!

» For n > 5 both quantities are infinite
> Quantitatively

db
m(e) = amepe (~€57) . M= o)
> Gravitational potential energy

3 GM?

E, = — -
& 5—-n R

The n = 5 solution is also known as Schuster-sphere. This case describes
well the Lynds Dark Nebula https://arxiv.org/abs/astro-ph/0408089



Solutions for p/p. for n=1,2 and 3

Solution of Lane-Emden Equation for n=1, 1.5, 3
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Figure 1: Plot of p/p. as a function of £/&



Solutions for the ratio m/M for n = 1,2 and 3

Solution of Lane-Emden Equation for n=1, 1.5, 3
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Figure 2: Plot of m/M as a function of £/&



Various Polytropes and the Sun
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Figure 3: Various polytropes along with the Sun (red line). Source:
https://www.ucolick.org/ woosley/ay112-14/lectures/lecture7.14.pdf
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» It can be demonstrated that physical solutions follow a
mass-radius scaling of the form

M ~ R(=3)/(n=1) g p(n=1)/(n=3)

» For n =1, radius is independent of the mass and dependent
only on K

> For n=3/2, we have R ~ M~/3 and more massive stars are
more compact (and have higher density). This is the case of
the degenerate non-relativistic electron gas, P o p°/3

» For n = 3, mass is independent of the radius and given by
Mcp, = 5.836p2 %M,

where K is fixed from natural constants. This is the case of
the degenerate relativistic electron gas, P  p*/3



If K is a free parameter...(pt. 1)

» So far, we assumed K is determined by natural constants.
Here we consider it as a free parameter. We assume the
pressure is given by a mixture of ideal gas pressure and
radiation pressure

R
P:Pgas+Prad:*pT+iT4
7 3

> We further assume the ratio 8 = Pgas/P, 1 — 3 = Prg/P is
constant, i.e.

Prad aT* 3(1—8)\ Y
p— _—rd _ T = (2=~ pl/4
1-8 7 31-8) ( ]

» Since P = Pgas/3, we have
4N 1/3 1/3
P = 3R 1-5 p*3 = Kp*/3
ap® B4
which is a polytropic relation with n = 3, but K is a free
parameter




If K is a free parameter...(pt. 2)

» We have already seen that for n = 3 the mass is dependent
only of K, explicitly

do K \3/?
weu(e2). (2
d€ ) ey \ TG

» By using the K as defined above, we have the “Eddington’s
quartic equation”

M\ 2
1-8=302-1073(— ) p*p*
s <%)Mﬁ
» Since M — 0 for 5 — 1 and M — +oco for 8 — 0, we can
conclude that the larger the mass, the more important the
radiation pressure is

» For the Sun, pug ~ 0.6, so S ~ 0.99961



If K is a free parameter...(pt. 3)

» By using the hydrostatic equilibrium and the transport
equation, we can derive this mass-luminosity relation

Rs.® M 3
L=773 () () p* B4 L
Ks M@

where ks is the opacity near the surface and ks ~ lem?g™
» For M close to or less than M, B~ 1, so L ~ M3
» For higher masses, 3* ~ M2 and L ~ M

1



The case n = 400 (pt. 1)

>

>

This case corresponds to v =1, i.e. P = Kp (isothermal gas).
Both mass and radius are infinite

From hydrostatic equilibrium, p(r) = pce=®(N/K  where ®(r)
satisfies the Poisson equation

PO 240
dr2 = rdr
Again, we use dimensionless variables defined as £ = Ar and
® = KO with A2 = 47Gp./K to get the
Emden—Chandrasekhar equation
d’0 2do
dég2 - £d¢
with boundary conditions 6(0) =0 and #'(0) =0

Since £ = 0 is a singular point, the power series expansion
near this point gives 0(¢) = £2/6 — £*/120, hence 6”(0) = 1/3



The case n = 400 (pt. 2)

Solution of Emden-Chandrasekhar Equation
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Figure 4: Plot of p/p. as a function of £



The case n = 400 (pt. 3)

» The model is used to construct isothermal cores

P In this model, there exists a maximum isothermal mass known
as Schéonberg—Chandrasekhar limit and given by

2
gsc = 0.37 <Mem/)
Hcore

where dsc = Mcore/Mtot

» For example, when hydrogen burning stops, the core is mainly
composed by helium, enveloped by hydrogen in outward shells



Thanks for your attention!?

2Sources: 1) V. Castellani, Astrofisica stellare, Zanichelli (1985)
2) R. Kippenhahn A. Weigert, Stellar Structure and Evolution, Springer (1990)



