

Polytropic Models

Lucio De Simone

An Introduction to Stellar Astrophysics: Prof. Pier Giorgio Prada Moroni

Guidelines

▶ The Equations of Stellar Evolution

- ▶ Basic Assumptions
- ▶ Full Set of Equations
- ▶ The Role of Time
- ▶ Polytropic Models
	- ▶ Lane-Emden Equation
	- ▶ General Properties of the Solutions
	- ▶ Eddington Standard Model
	- ▶ Mass-Luminosity relation

The Equations of Stellar Evolution

- \triangleright Isolation in space: their structure depends only on intrinsic properties (mass and composition)
- ▶ Spherical symmetry:

$$
dm(t,r) = 4\pi r^2 \rho dr - 4\pi r^2 \rho v dt
$$

Departure from spherical symmetry can arise from rotations and magnetic fields, but typically (e.g. the Sun)

$$
\begin{cases} \frac{E_{rot}}{E_{grav}} = \frac{M\omega^2 R^2}{GM^2/R} \sim 2\cdot 10^{-5} \\ \frac{U_{magn}}{E_{grav}/V} = \frac{B^2/\mu_0}{GM^2/R^4} \sim 10^{-10} \text{ (for } B = 1 \text{ T)} \end{cases}
$$

Full Set of Equations

▶ The stellar structure is determined by solving simultaneously the equations

$$
\begin{cases}\n\frac{\partial P}{\partial r} = & \text{(Hydrodynamics equation)} \\
\frac{\partial m}{\partial r} = & \text{(Continuity equation)} \\
\frac{\partial L}{\partial r} = & \text{(Energy conservation)} \\
\frac{\partial T}{\partial r} = & \text{(Transport equation)} \\
\frac{\frac{\partial X_{i=1,N}}{\partial t}}{=} & \text{(Equations for the composition)}\n\end{cases}
$$

- \triangleright Together with finite equations (equation of state, opacity, energy production, etc.)
- \blacktriangleright 4 + N partial differential equations for 4 + N unknown variables (m, ρ , T, L and X_i) in functions of *independent* variables t and r

The role of time

\blacktriangleright Time appears in

▶ Hydrodynamics equation $\rightarrow \frac{\partial^2 r}{\partial t^2} \rightarrow$ changes in the mechanical structure \rightarrow timescale

$$
\tau_{\sf dyn} \approx 10^3 \sqrt{(R/R_\odot)^3(M_\odot/M)} s
$$

► Energy conservation $\rightarrow \partial s/\partial t \rightarrow$ changes in the thermal structure → timescale

$$
\tau_{KH} \approx 10^{14} (M/M_{\odot})^2 (R_{\odot}/R)(L_{\odot}/L)s
$$

▶ Equations for the composition $\rightarrow \partial X_i/\partial t \rightarrow$ changes in the $composition \rightarrow timescale$

 $\tau_{\text{nuc}} \approx 10^{17} (M/M_{\odot})(L_{\odot}/L)s$ (e.g. hydrogen burning)

 \rightarrow $\tau_{\text{nuc}} \gg \tau_{\text{KH}} \gg \tau_{\text{dyn}}$

Complete Equilibrium

- ▶ Since $\tau_{\text{nuc}} \gg \tau_{KH} \gg \tau_{\text{dyn}}$, $X_i(t) \equiv X_i(t_0)$ (and we assume uniform initial composition)
- ▶ Hydrostatic equilibrium $\left(\frac{\partial^2 r}{\partial t^2} = 0\right)$ + thermal equilibrium $(\partial s/\partial t = 0) =$ "Complete Equilibrium"
- ▶ Partial derivatives become ordinary derivatives and the quantities depend only on r
- ▶ Suitable boundary conditions (e.g. central and surface conditions)

Polytropic Models

- ▶ Mechanical equations are coupled to the "thermo-energetic" equations through the pressure $P = P(\rho, T)$
- ▶ For simple model $P = P(\rho)$ they decouple
- ▶ Polytropic Model $P = K\rho^{\gamma}$ with K polytropic constant and γ *polytropic exponent* (also defined as $\gamma = 1 + \frac{1}{n}$ with n polytropic index)
- \triangleright K can be fixed from natural constants or can be a free parameter
- ▶ A simple case is the homogeneous gaseous sphere with $\rho = \mathsf{K}'\mathsf{P}^{1/\gamma}$ and $n = 0$ $(\gamma \to +\infty)$

Lane-Emden Equation

 \triangleright By defining the dimensionless variables ξ and θ as $r = \alpha \xi$ and $\rho = \rho_c \theta^n$ we get the *Lane-Emden* equation

$$
\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) + \theta^n = 0 \quad \text{with} \quad \alpha^2 = \frac{(n+1)K\rho_c^{-1+1/n}}{4\pi G}
$$

- As boundary conditions, we require $\rho(0) = \rho_c$ and $\rho'(0) = 0$ in $r = 0$, i.e. $\theta(0) = 1$ and $\theta'(0) = 0$ in $\xi = 0$
- \blacktriangleright The radius is determined by $R = \alpha \xi_0$
- \triangleright Actually, we could implicitly have the third condition $\rho(R) = 0$ if we assume $P(R) \approx 0$, i.e. $\theta(\xi_0) = 0$

General Properties of the Solutions

- \triangleright Only for $n = 0, 1$ and 5 analytical solutions exist
- ▶ For $n < 5$ the solution admits finite radius and finite total mass
- \triangleright For $n = 5$ the solution admits *infinite* radius but *finite* total $mass¹$
- ▶ For $n \geq 5$ both quantities are *infinite*
- ▶ Quantitatively

$$
m(\xi) = 4\pi\alpha^3 \rho_c \left(-\xi^2 \frac{d\theta}{d\xi}\right), \quad M \equiv m(\xi_0)
$$

▶ Gravitational potential energy

$$
E_g=-\frac{3}{5-n}\frac{GM^2}{R}
$$

¹The $n = 5$ solution is also known as Schuster-sphere. This case describes well the Lynds Dark Nebula https://arxiv.org/abs/astro-ph/0408089

Solutions for ρ/ρ_c for $n=1,\frac{3}{2}$ $\frac{3}{2}$ and 3

Figure 1: Plot of ρ/ρ_c as a function of ξ/ξ_0

Solutions for the ratio m/M for $n=1,\frac{3}{2}$ $\frac{3}{2}$ and 3

Figure 2: Plot of m/M as a function of ξ/ξ_0

Various Polytropes and the Sun

Figure 3: Various polytropes along with the Sun (red line). Source: https://www.ucolick.org/ woosley/ay112-14/lectures/lecture7.14.pdf

$n=1,\frac{3}{2}$ $\frac{3}{2}$ and 3

 \blacktriangleright It can be demonstrated that physical solutions follow a mass-radius scaling of the form

$$
M \sim R^{(n-3)/(n-1)}, \quad R \sim M^{(n-1)/(n-3)}
$$

- \blacktriangleright For $n = 1$, radius is independent of the mass and dependent only on K
- ▶ For $n = 3/2$, we have $R \sim M^{-1/3}$ and more massive stars are more compact (and have higher density). This is the case of the *degenerate non-relativistic electron gas*, $P \propto \rho^{5/3}$
- \triangleright For $n = 3$, mass is independent of the radius and given by

$$
M_{Ch}=5.836\mu_e^{-2}M_\odot
$$

where K is fixed from natural constants. This is the case of the *degenerate relativistic electron gas, P* $\propto \rho^{4/3}$

If K is a free parameter...(pt. 1)

 \triangleright So far, we assumed K is determined by natural constants. Here we consider it as a free parameter. We assume the pressure is given by a mixture of ideal gas pressure and radiation pressure

$$
P = P_{\text{gas}} + P_{\text{rad}} = \frac{R}{\mu} \rho T + \frac{a}{3} T^4
$$

▶ We further assume the ratio $\beta = P_{\text{gas}}/P$, $1 - \beta = P_{\text{rad}}/P$ is constant, i.e.

$$
P = \frac{P_{rad}}{1 - \beta} = \frac{aT^4}{3(1 - \beta)} \Longrightarrow T = \left(\frac{3(1 - \beta)}{a}\right)^{1/4} P^{1/4}
$$

▶ Since $P = P_{\text{gas}}/\beta$, we have

$$
P = \left(\frac{3R^4}{a\mu^4}\right)^{1/3} \left(\frac{1-\beta}{\beta^4}\right)^{1/3} \rho^{4/3} \equiv K \rho^{4/3}
$$

which is a polytropic relation with $n = 3$, but K is a free parameter

If K is a free parameter...(pt. 2)

 \triangleright We have already seen that for $n = 3$ the mass is dependent only of K , explicitly

$$
M = 4\pi \left(-\xi^2 \frac{d\theta}{d\xi}\right)_{\xi = \xi_0} \left(\frac{K}{\pi G}\right)^{3/2}
$$

 \triangleright By using the K as defined above, we have the "Eddington's quartic equation"

$$
1 - \beta = 3.02 \cdot 10^{-3} \left(\frac{M}{M_{\odot}}\right)^2 \mu^4 \beta^4
$$

- \triangleright Since $M \to 0$ for $\beta \to 1$ and $M \to +\infty$ for $\beta \to 0$, we can conclude that the larger the mass, the more important the radiation pressure is
- ▶ For the Sun, $\mu_{\odot} \simeq 0.6$, so $\beta_{\odot} \simeq 0.99961$

If K is a free parameter...(pt. 3)

 \triangleright By using the hydrostatic equilibrium and the transport equation, we can derive this mass-luminosity relation

$$
L = 7.73 \left(\frac{\kappa_{s,\odot}}{\kappa_s}\right) \left(\frac{M}{M_{\odot}}\right)^3 \mu^4 \beta^4 L_{\odot}
$$

where $\kappa_{\bm{s}}$ is the opacity near the surface and $\kappa_{\bm{s},\odot}\simeq 1\epsilon m^2g^{-1}$ ▶ For M close to or less than M_{\odot} , $\beta \simeq 1$, so $L \sim M^3$ ▶ For higher masses, $\beta^4 \sim M^{-2}$ and $L \sim M$

The case $n = +\infty$ (pt. 1)

- ▶ This case corresponds to $\gamma = 1$, i.e. $P = K \rho$ (isothermal gas). Both mass and radius are infinite
- ▶ From hydrostatic equilibrium, $\rho(r) = \rho_c e^{-\Phi(r)/K}$, where $\Phi(r)$ satisfies the Poisson equation

$$
\frac{d^2\Phi}{dr^2}+\frac{2}{r}\frac{d\Phi}{dr}=4\pi G\rho(r)
$$

Again, we use dimensionless variables defined as $\xi = Ar$ and $\mathsf{\Phi} = \mathsf{K}\theta$ with $\mathsf{A}^2 = 4\pi \mathsf{G} \rho_\mathsf{c} / \mathsf{K}$ to get the Emden–Chandrasekhar equation

$$
\frac{d^2\theta}{d\xi^2} + \frac{2}{\xi}\frac{d\theta}{d\xi} = e^{-\theta}
$$

with boundary conditions $\theta(0)=0$ and $\theta'(0)=0$

 \triangleright Since $\xi = 0$ is a singular point, the power series expansion near this point gives $\theta(\xi) = \xi^2/6 - \xi^4/120$, hence $\theta''(0) = 1/3$

The case $n = +\infty$ (pt. 2)

Figure 4: Plot of ρ/ρ_c as a function of ξ

The case $n = +\infty$ (pt. 3)

- ▶ The model is used to construct isothermal cores
- \blacktriangleright In this model, there exists a maximum isothermal mass known as Schönberg–Chandrasekhar limit and given by

$$
q_{SC} = 0.37 \left(\frac{\mu_{env}}{\mu_{core}}\right)^2
$$

where $q_{SC} = M_{core}/M_{tot}$

 \triangleright For example, when hydrogen burning stops, the core is mainly composed by helium, enveloped by hydrogen in outward shells

Thanks for your attention!²

²Sources: 1) V. Castellani, Astrofisica stellare, Zanichelli (1985)

2) R. Kippenhahn A. Weigert, Stellar Structure and Evolution, Springer (1990)