
Polytropic Models

Lucio De Simone

An Introduction to Stellar Astrophysics: Prof. Pier Giorgio Prada Moroni



Guidelines

▶ The Equations of Stellar Evolution
▶ Basic Assumptions
▶ Full Set of Equations
▶ The Role of Time

▶ Polytropic Models
▶ Lane-Emden Equation
▶ General Properties of the Solutions
▶ Eddington Standard Model
▶ Mass-Luminosity relation



The Equations of Stellar Evolution

▶ Isolation in space: their structure depends only on intrinsic
properties (mass and composition)

▶ Spherical symmetry:

dm(t, r) = 4πr2ρ dr − 4πr2ρ v dt

Departure from spherical symmetry can arise from rotations
and magnetic fields, but typically (e.g. the Sun){

Erot
Egrav

= Mω2R2

GM2/R
∼ 2 · 10−5

Umagn

Egrav/V
= B2/µ0

GM2/R4 ∼ 10−10 (for B = 1T )



Full Set of Equations

▶ The stellar structure is determined by solving simultaneously
the equations

∂P/∂r = (Hydrodynamics equation)

∂m/∂r = (Continuity equation)

∂L/∂r = (Energy conservation)

∂T/∂r = (Transport equation)
∂Xi=1,N

∂t = (Equations for the composition)

▶ Together with finite equations (equation of state, opacity,
energy production, etc.)

▶ 4 + N partial differential equations for 4 + N unknown
variables (m, ρ, T , L and Xi ) in functions of independent
variables t and r



The role of time

▶ Time appears in
▶ Hydrodynamics equation → ∂2r/∂t2 → changes in the

mechanical structure → timescale

τdyn ≈ 103
√
(R/R⊙)3(M⊙/M)s

▶ Energy conservation → ∂s/∂t → changes in the thermal
structure → timescale

τKH ≈ 1014(M/M⊙)
2(R⊙/R)(L⊙/L)s

▶ Equations for the composition → ∂Xi/∂t → changes in the
composition → timescale

τnuc ≈ 1017(M/M⊙)(L⊙/L)s (e.g. hydrogen burning)

−→ τnuc ≫ τKH ≫ τdyn



Complete Equilibrium

▶ Since τnuc ≫ τKH ≫ τdyn, Xi (t) ≡ Xi (t0) (and we assume
uniform initial composition)

▶ Hydrostatic equilibrium (∂2r/∂t2 = 0) + thermal equilibrium
(∂s/∂t = 0) = “Complete Equilibrium”

▶ Partial derivatives become ordinary derivatives and the
quantities depend only on r

▶ Suitable boundary conditions (e.g. central and surface
conditions)



Polytropic Models

▶ Mechanical equations are coupled to the “thermo-energetic”
equations through the pressure P = P(ρ,T )

▶ For simple model P = P(ρ) they decouple

▶ Polytropic Model P = Kργ with K polytropic constant and γ
polytropic exponent (also defined as γ = 1 + 1

n with n
polytropic index)

▶ K can be fixed from natural constants or can be a free
parameter

▶ A simple case is the homogeneous gaseous sphere with
ρ = K ′P1/γ and n = 0 (γ → +∞)



Lane-Emden Equation

▶ By defining the dimensionless variables ξ and θ as r = αξ and
ρ = ρcθ

n we get the Lane-Emden equation

1

ξ2
d

dξ

(
ξ2

dθ

dξ

)
+ θn = 0 with α2 =

(n + 1)Kρ
−1+1/n
c

4πG

▶ As boundary conditions, we require ρ(0) = ρc and ρ′(0) = 0
in r = 0, i.e. θ(0) = 1 and θ′(0) = 0 in ξ = 0

▶ The radius is determined by R = αξ0

▶ Actually, we could implicitly have the third condition
ρ(R) = 0 if we assume P(R) ≈ 0, i.e. θ(ξ0) = 0



General Properties of the Solutions

▶ Only for n = 0, 1 and 5 analytical solutions exist

▶ For n < 5 the solution admits finite radius and finite total
mass

▶ For n = 5 the solution admits infinite radius but finite total
mass1

▶ For n ≥ 5 both quantities are infinite

▶ Quantitatively

m(ξ) = 4πα3ρc

(
−ξ2

dθ

dξ

)
, M ≡ m(ξ0)

▶ Gravitational potential energy

Eg = − 3

5− n

GM2

R

1The n = 5 solution is also known as Schuster-sphere. This case describes
well the Lynds Dark Nebula https://arxiv.org/abs/astro-ph/0408089



Solutions for ρ/ρc for n = 1, 32 and 3

Figure 1: Plot of ρ/ρc as a function of ξ/ξ0



Solutions for the ratio m/M for n = 1, 32 and 3

Figure 2: Plot of m/M as a function of ξ/ξ0



Various Polytropes and the Sun

Figure 3: Various polytropes along with the Sun (red line). Source:
https://www.ucolick.org/ woosley/ay112-14/lectures/lecture7.14.pdf



n = 1, 32 and 3

▶ It can be demonstrated that physical solutions follow a
mass-radius scaling of the form

M ∼ R(n−3)/(n−1), R ∼ M(n−1)/(n−3)

▶ For n = 1, radius is independent of the mass and dependent
only on K

▶ For n = 3/2, we have R ∼ M−1/3 and more massive stars are
more compact (and have higher density). This is the case of
the degenerate non-relativistic electron gas, P ∝ ρ5/3

▶ For n = 3, mass is independent of the radius and given by

MCh = 5.836µ−2
e M⊙

where K is fixed from natural constants. This is the case of
the degenerate relativistic electron gas, P ∝ ρ4/3



If K is a free parameter...(pt. 1)
▶ So far, we assumed K is determined by natural constants.

Here we consider it as a free parameter. We assume the
pressure is given by a mixture of ideal gas pressure and
radiation pressure

P = Pgas + Prad =
R

µ
ρT +

a

3
T 4

▶ We further assume the ratio β = Pgas/P, 1− β = Prad/P is
constant, i.e.

P =
Prad

1− β
=

aT 4

3(1− β)
=⇒ T =

(
3(1− β)

a

)1/4

P1/4

▶ Since P = Pgas/β, we have

P =

(
3R4

aµ4

)1/3(
1− β

β4

)1/3

ρ4/3 ≡ Kρ4/3

which is a polytropic relation with n = 3, but K is a free
parameter



If K is a free parameter...(pt. 2)

▶ We have already seen that for n = 3 the mass is dependent
only of K , explicitly

M = 4π

(
−ξ2

dθ

dξ

)
ξ=ξ0

(
K

πG

)3/2

▶ By using the K as defined above, we have the “Eddington’s
quartic equation”

1− β = 3.02 · 10−3

(
M

M⊙

)2

µ4β4

▶ Since M → 0 for β → 1 and M → +∞ for β → 0, we can
conclude that the larger the mass, the more important the
radiation pressure is

▶ For the Sun, µ⊙ ≃ 0.6, so β⊙ ≃ 0.99961



If K is a free parameter...(pt. 3)

▶ By using the hydrostatic equilibrium and the transport
equation, we can derive this mass-luminosity relation

L = 7.73

(
κs,⊙
κs

)(
M

M⊙

)3

µ4β4L⊙

where κs is the opacity near the surface and κs,⊙ ≃ 1cm2g−1

▶ For M close to or less than M⊙, β ≃ 1, so L ∼ M3

▶ For higher masses, β4 ∼ M−2 and L ∼ M



The case n = +∞ (pt. 1)

▶ This case corresponds to γ = 1, i.e. P = Kρ (isothermal gas).
Both mass and radius are infinite

▶ From hydrostatic equilibrium, ρ(r) = ρce
−Φ(r)/K , where Φ(r)

satisfies the Poisson equation

d2Φ

dr2
+

2

r

dΦ

dr
= 4πGρ(r)

▶ Again, we use dimensionless variables defined as ξ = Ar and
Φ = Kθ with A2 = 4πGρc/K to get the
Emden–Chandrasekhar equation

d2θ

dξ2
+

2

ξ

dθ

dξ
= e−θ

with boundary conditions θ(0) = 0 and θ′(0) = 0

▶ Since ξ = 0 is a singular point, the power series expansion
near this point gives θ(ξ) = ξ2/6− ξ4/120, hence θ′′(0) = 1/3



The case n = +∞ (pt. 2)

Figure 4: Plot of ρ/ρc as a function of ξ



The case n = +∞ (pt. 3)

▶ The model is used to construct isothermal cores

▶ In this model, there exists a maximum isothermal mass known
as Schönberg–Chandrasekhar limit and given by

qSC = 0.37

(
µenv

µcore

)2

where qSC = Mcore/Mtot

▶ For example, when hydrogen burning stops, the core is mainly
composed by helium, enveloped by hydrogen in outward shells



Thanks for your attention!2

2Sources: 1) V. Castellani, Astrofisica stellare, Zanichelli (1985)
2) R. Kippenhahn A. Weigert, Stellar Structure and Evolution, Springer (1990)


