11/07/2024

MAGIC Observations of the Blazar TON 116 in a Multi-wavelength Context

Experimental Physics PhD Thesis

Candidate: Andrea Lorini Supervisor: Dr. Sofia Ventura Co-supervisor: Dr. Giacomo Bonnoli

- AGNs framework: blazars and related sequence
- VHE and multi-wavelength study of the potential outlier TON 116
- Conclusions and perspectives

Main framework

- > Investigation of the disputed *blazar sequence* through the blazar **TON 116**
- ➢ High Energy overluminosity if z ≈ 1 => potential sequence outlier, but z ≥ 0.483 from optical spectroscopy
- > Distance/nature puzzle solvable with MAGIC observations (VHE never explored for TON 116!)
- > Study extended in a modern MWL context to infer the most likely emission mechanisms

So we do not know...

The extragalactic source TON 116

<u>Coordinates</u>: RA = 12h 43' 12.7", Dec = +36° 27' 44.0" (J2000)

Constellation: Canes Venatici (CVn)

Category/Class: AGN/BL-Lac-type Blazar

Main Catalogues: TON (Iriarte & Chavira 1957), Roma-BZCAT (Massaro et al. 2015)

The extragalactic source TON 116

<u>Coordinates</u>: RA = 12h 43' 12.7", Dec = +36° 27' 44.0" (J2000)

Constellation: Canes Venatici (CVn)

Category/Class: AGN/BL-Lac-type Blazar

Main Catalogues: TON (Iriarte & Chavira 1957), Roma-BZCAT (Massaro et al. 2015)

Active Galactic Nuclei

Extremely high flux at all wavelengths for ~ 1% of all known galaxies

Accretion onto a Super Massive Black Hole (SMBH) of ~ 10⁶-10¹⁰ M_{\odot}

Accretion disk of infalling material (black-body emission)

Optically-thick dusty torus (Vis-UV absorber and IR emitter)

Radio jet of ultra-high-speed particles reaching up to ~ 1 Mpc

The Unified Model

Many empirical AGN classes defined over time

BUT...

All basically the same objects; differences due to spatial orientation (Urry & Padovani 1995)

- The most powerful, persistent sources (of UHECRs also)
- Small I.o.s.-axis angle => inner parts more appreciable
- AGNs with jets ~ towards Earth ($\theta < 20^{\circ}$) are called <u>*blazars*</u>

Andrea Lorini

PhD Thesis

Blazars

Around 10% of AGNs are radio-loud ($F_{5 GHz}$ / $F_{250 nm}$ > 10), and ~ 1% of them are blazars

Jets towards us => extreme properties:

- Very beamed, boosted radiation (also *superluminal motion*)
- Bolometric luminosity up to 10⁴⁸ erg/s
- High polarization and variability (down to min scale!)
- Candidates for direct UHECRs and neutrinos

Andrea Lorini

PhD Thesis

Andrea Lorini

PhD Thesis

Andrea Lorini

PhD Thesis

Andrea Lorini

PhD Thesis

AGN classification

Andrea Lorini

PhD Thesis

AGN classification

Andrea Lorini

PhD Thesis

Spectral Energy Distribution

Spectral Energy Distribution

• Low-energy (peak in IR-X bands) and high-energy (peak in γ MeV-TeV band) broad bumps

Spectral Energy Distribution

- Low-energy (peak in IR-X bands) and high-energy (peak in γ MeV-TeV band) broad bumps
- Simple SSC (+EC) leptonic model usually assumed, but lepto-hadronic ones possible (at HE)

A *blob* assumed spherical (radius R_b) and filled with particles, relativistically moving (Lorentz factor Γ_b) nearly towards us through a tangled magnetic field (\overline{B})

$$R_b = \frac{c t_{var} \, \delta_D}{1+z}$$

Andrea Lorini

A *blob* assumed spherical (radius R_b) and filled with particles, relativistically moving (Lorentz factor Γ_b) nearly towards us through a tangled magnetic field (\overline{B})

Andrea Lorini

A *blob* assumed spherical (radius R_b) and filled with particles, relativistically moving (Lorentz factor Γ_b) nearly towards us through a tangled magnetic field (\overline{B})

Andrea Lorini

PhD Thesis

Parameters: B, R_b , δ_D , k, p_1 , p_2 , γ_{min} , γ_{br} , γ_{max}

A *blob* assumed spherical (radius R_b) and filled with particles, relativistically moving (Lorentz factor Γ_b) nearly towards us through a tangled magnetic field (\overline{B})

Links and constraints on γ_{br} , cooling, particles' escape

Andrea Lorini

PhD Thesis

Blazar sequence

 Set of 126 well-sampled blazars binned in radio luminosity (L_{5 GHz})

 SED peaks towards smaller frequencies with increasing bolometric L (FRSQs more luminous)

Blazar sequence

Ghisellini et al. (2017)

 Set of 747 γ-emitting blazars binned in γ luminosity, trend confirmed

But increasing L_{γ} ...

- FSRQs more Comptondominated and with harder X-ray slope
- BL Lacs with redder-whenbrigther behaviour

<u>Fossati et al. (1998)</u>

 Set of 126 well-sampled blazars binned in radio luminosity (L_{5 GHz})

 SED peaks towards smaller frequencies with increasing bolometric L (FRSQs more luminous)

Andrea Lorini

PhD Thesis

<u>Padovani (2007)</u>

- No $v_{p,s}$ L_{5 GHz} anti-correlation (+ large power scatter at given $v_{p,s}$)
- **FSRQs detected with high** $v_{p,s}$ (UV X)
 - $v_{p,s}$ (FSRQs) \leq 10-100 $v_{p,s}$ (BL Lacs) (at most, to be better investigated)

<u>Padovani (2007)</u>

- No $v_{p,s}$ L_{5 GHz} anti-correlation (+ large power scatter at given $v_{p,s}$)
- **FSRQs detected with high** $v_{p,s}$ (UV X)
 - $v_{p,s}$ (FSRQs) \lesssim 10-100 $v_{p,s}$ (BL Lacs) (at most, to be better investigated)

Giommi et al. (2012)

 ~ all blazar classifications and trends are selection-affected

<u>Padovani (2007)</u>

- No $v_{p,s}$ L_{5 GHz} anti-correlation (+ large power scatter at given $v_{p,s}$)
- **FSRQs detected with high** $v_{p,s}$ (UV X)
 - $v_{p,s}$ (FSRQs) \lesssim 10-100 $v_{p,s}$ (BL Lacs) (at most, to be better investigated)

Giommi et al. (2012)

 ~ all blazar classifications and trends are selection-affected

<u>Padovani (2007)</u>

- No $v_{p,s}$ L_{5 GHz} anti-correlation (+ large power scatter at given $v_{p,s}$)
- **FSRQs detected with high** $v_{p,s}$ (UV X)
 - $\nu_{p,s} (FSRQs) \lesssim 10-100 \nu_{p,s} (BL Lacs)$ (at most, to be better investigated)

<u>Keenan et al. (2021)</u>

- End of the blazar sequence
 (from ~ 2000 accurate SEDs of jetted AGNs)
 Yet jets' dichotomy:
- 1 -> Weakly-accreting LERGs (mostly HBLs)
- **2** -> Efficiently-accreting HERGs (FSRQs, LBLs)

<u>Giommi et al. (2012)</u>

 ~ all blazar classifications and trends are selection-affected

Andrea Lorini

PhD Thesis

TON 116 vs blazar sequence

High HE state from *Fermi*-LAT (4LAC, *Ajello et al. 2020*) assuming z ≈ 1

 $v_{p,s} > 10^{15}$ Hz and $L_{HE} > 10^{46}$ erg/s \implies out of blazar sequence!

TON 116 vs blazar sequence

High HE state from *Fermi*-LAT (4LAC, *Ajello et al. 2020*) assuming z ≈ 1

 $v_{p,s} > 10^{15}$ Hz and $L_{HE} > 10^{46}$ erg/s \implies out of blazar sequence!

But from GTC observation in optical: z > 0.483 (Paiano et al. 2017)

Mgll absorption doublet at 4160 Å due to intervening matter

- Previously: z > 0.485 (Plotkin et al. 2010), z ≈ 0.50 (Meisner & Romani 2010)
- Is TON 116 overluminous due to proximity, or to intrinsic properties?

Andrea Lorini

PhD Thesis

Gamma band distance constraint

From HE (*Fermi*-LAT) and VHE (MAGIC) spectrum \implies upper limit on redshift (z^*)

VHE affected by EBL absorption (increasing with energy and distance):

$$\gamma + \gamma \longrightarrow e^{-} + e^{+}$$

Gamma band distance constraint

From HE (*Fermi*-LAT) and VHE (MAGIC) spectrum \implies upper limit on redshift (z^*)

VHE affected by EBL absorption (increasing with energy and distance): $\gamma + \gamma \longrightarrow e^{-} + e^{+}$

The EBL-corrected spectrum cannot be harder than HE trend!

Gamma band distance constraint

From HE (*Fermi*-LAT) and VHE (MAGIC) spectrum \implies upper limit on redshift (z^*)

VHE affected by EBL absorption (increasing with energy and distance):

$$\gamma + \gamma \longrightarrow e^- + e^+$$

The EBL-corrected spectrum cannot be harder than HE trend!

<u>Prandini et al. (2010)</u>:

Change of intrinsic VHE spectrum with z (sample of known TeV *Fermi* sources)

TON 116 distance can be constrained!

Andrea Lorini

PhD Thesis

Exploited Instruments

Andrea Lorini

PhD Thesis

Exploited Instruments

Andrea Lorini

PhD Thesis

Major Atmospheric Gamma Imaging Cherenkov

- One of the currently active IACTs
 - Located on La Palma (29° N, 18° W, Canary Islands, Spain), at ~ 2,200 m a.s.l.
- Two dishes of 17 m diameter, 85 m aside, each with ~ 250 mirrors of 1 m side (M1, M2 since 2004, 2009)
- Total area ≈ 236 m², FoV ≈ 3.5°, angular resolution ≈ 0.1°

Major Atmospheric Gamma Imaging Cherenkov

- One of the currently active IACTs
 - Located on La Palma (29° N, 18° W, Canary Islands, Spain), at ~ 2,200 m a.s.l.
- Two dishes of 17 m diameter, 85 m aside, each with ~ 250 mirrors of 1 m side (M1, M2 since 2004, 2009)
- Total area ≈ 236 m², FoV ≈ 3.5°, angular resolution ≈ 0.1°

Aiming at indirectly detecting primary γ -rays in the \sim 30 GeV – 50 TeV range through the Cherenkov technique

From De Naurois & Mazin (2015)

VHE photons revelation

Primary VHE γ-ray interacting with atmospheric nuclei (h ~ 10 km)

Cascade of generated $e^{-}-e^{+}$ (pair production) and γ (bremsstrahlung)

Cherenkov pool (~ ns pulse) focused by M1 and M2 reflectors

VHE photons revelation

Primary VHE γ -ray interacting with atmospheric nuclei (h ~ 10 km)

Cascade of generated $e^{-}-e^{+}$ (pair production) and γ (bremsstrahlung)

Cherenkov pool (~ ns pulse) focused by M1 and M2 reflectors

MAGIC Analysis and Reconstruction Software (MARS)

Fundamental quantities reconstructed:

Direction

turboloa

Hadronness

ray enters th atmosphere merrp Converts into ROOT format and adds system reports sorcerer ion and signal extraction ON data caspar superstar Skymaps **OFF** data ging data of MI-M2 star MC (gamma-rays) age cleaning and Hillas parameterizati odie coach Significance evaluation Train RF (DISP and g/h separation) merrp Converts into ROOT format and idds system reports melibea oplication of the RF and the LUTs flute Spectra and lightcurves sorcerer and signal extraction ON data **OFF** data mage cleaning and Hillas parameterization MC (gamma-rays) Intermediate-level (IL) Low-level (LL) High-level (HL)

Andrea Lorini

PhD Thesis

MAGIC signal

Reconstructed γ events versus θ^2

 $\theta \implies$ angle from ON/OFF region centre

Andrea Lorini

MAGIC signal

Reconstructed γ events versus θ^2

 $\theta \implies$ angle from ON/OFF region centre

Source Hypothesis Test:

 H_0 (no γ emission) or H_1 (γ emission)?

$$\mathbb{S}_3 = \sqrt{2} \left\{ N_{\rm on} \ln \left(\frac{1+\alpha}{\alpha} \frac{N_{\rm on}}{N_{\rm on}+N_{\rm off}} \right) + N_{\rm off} \ln \left[(1+\alpha) \frac{N_{\rm off}}{N_{\rm on}+N_{\rm off}} \right] \right\}^{1/2}$$

Signal significance (Li & Ma 1983)

Andrea Lorini

MAGIC signal

Reconstructed γ events versus θ^2

 $\theta \implies$ angle from ON/OFF region centre

Source Hypothesis Test:

 H_0 (no γ emission) or H_1 (γ emission)?

$$\mathbb{S}_3 = \sqrt{2} \left\{ N_{\rm on} \ln\left(\frac{1+\alpha}{\alpha} \frac{N_{\rm on}}{N_{\rm on}+N_{\rm off}}\right) + N_{\rm off} \ln\left[(1+\alpha) \frac{N_{\rm off}}{N_{\rm on}+N_{\rm off}}\right] \right\}^{1/2}$$

Signal significance (Li & Ma 1983)

Standard observation mode: Wobble Source & background events efficiently taken!

Andrea Lorini

PhD Thesis

TON 116 by MAGIC (2021, 2022)

Zenith: 7°-36°; DTs: Dark Extragalactic; DCMax = 3000 nA; LIDAR@9km: > 0.7; Cloudiness: < 30; En. range: LE

TON 116 by MAGIC (2021, 2022)

Zenith: 7°-36°; DTs: Dark Extragalactic; DCMax = 3000 nA; LIDAR@9km: > 0.7; Cloudiness: < 30; En. range: LE

VHE excess hint

2021 (~ 18h, flute)

Excess events

s 300 Leuts 250 Still excess in the 10² 2021+2022 dataset? 200 150 100 10 50 X NO ✓ YES -50 1 -100 -150 10⁻¹ 10² 10³ 10⁴ 10 10² 10³ 10⁴ E_{est} (GeV) 10 E_{est} (GeV) Spurious Compatible fluctuation with genuine is suggested excess

2021+2022 (~ 25h, foam)

PhD Thesis

VHE excess hint

2021+2022 (~ 25h, foam) 2021 (~ 18h, flute) Excess events ≈ 100 GeV \$1 300 Even 1 250 Still excess in the 10² 2.4 σ 2021+2022 dataset? 200 150 100 10 50 X NO ✓ YES -50 1 -100 -150 10⁻¹ 10³ 10² 10⁴ 10 10² 10³ 10⁴ E_{est} (GeV) 10 E_{est} (GeV) **Spurious** Compatible fluctuation with genuine is

Unisi DSFTA 22

excess

suggested

PhD Thesis

VHE excess hint

Andrea Lorini

PhD Thesis

TON 116 by MAGIC (2023, total)

Zenith: 7°-36°; DTs: Dark Extragalactic; DCMax = 3000 nA; LIDAR@9km: > 0.7; Cloudiness: < 30; En. range: LE

New proposal for 2023 (observational cycle 18)

Worse weather conditions

Atypical analysis settings required for ST.03.18 and ST.03.19 MC periods

≲ ½ time selected (from March on)

TON 116 by MAGIC (2023, total)

Zenith: 7°-36°; DTs: Dark Extragalactic; DCMax = 3000 nA; LIDAR@9km: > 0.7; Cloudiness: < 30; En. range: LE

PhD Thesis

New proposal for 2023 (observational cycle 18)

Worse weather conditions

Atypical analysis settings required for ST.03.18 and ST.03.19 MC periods ≲ ½ time selected (from March on)

Odie results about joint 2021-2023 dataset:

MAGIC Flux of TON 116

 $N_{bin}(E_{est}) = 20$; $N_{bin}(Az) = 1$; z = 0.5; LC E_{min} /binning = 100 GeV / night-wise; CL = 95%; EBL Model: Dominguez+11

MAGIC Flux of TON 116

 $N_{bin}(E_{est}) = 20$; $N_{bin}(Az) = 1$; z = 0.5; LC E_{min} /binning = 100 GeV / night-wise; CL = 95%; EBL Model: Dominguez+11

- ✓ First unveiling of VHE side for the source ever!
- \checkmark No detection \implies upper limits (ULs)
- ✓ Constraint on the blue-tail of the Compton bump
- ✓ $E_{p,c} \le 100$ GeV and strong suppression before 1 TeV

Andrea Lorini

PhD Thesis

TON 116 by Fermi-LAT

[magic_agn] Fwd: Fermi-Lat Analysis Da 18:00:00 D	aily Report - 2024-06-04 18:00:00 2024-06-05
PSR_J2021+4026 Spectral index = -2.15 +/- 0.13 TS = 80.1	TON 116
Flux (100MeV-500 GeV) = 1.54 +/- 0.31 e-06 ph cm^-2 s^-1 The analyses on:	
mkn501 (TS = 20.3), PG1553+113 (TS = 21.7), 3c273 (TS = 18.4), OP313 4C+25.01, B3_2247+381, S51044+71, TXS_2320+343, NGC_4278, RX/0111 089, pks1222, MS1221+2452, TXS_1515-273, QS02237+0305, A09/235+169	[15 = 18.0] /fio8h-666, 3C345, 1ES1218+304, 1H_1515+660, RGB1417+257, RS_Ophi, 10.5-51333, KS_1441+25, Q0957+561, TXS0059+581, TXS1801+253, 5C_12.291, PKS1510- 47C_24C2, 4FGL_00955, 1+3551, GB6_00043+3426, 1ES_0229+200, GB_1310+487,
CRATES_J1558+5625, TXS0506+056, 3FGLJ0156.3+3913, PKS/1406.976, 1ES1215+303, 3FGLJ0627.9-1517, ngc1275, OQ_530, 3c66a, 550756, 1WH: 4C-01.28, TXS0637-128, 2FGL1604.6+5710, PKS1509+024, 522,1109+22, 0	ON246, PKS2247-131, 1ES_1959+650, 1A_0535+262, PKS2345-16, B2_2234_28A, SPJ104516.2+275133, QSO_B1600+4344, O.2287, TCtb, 4C50+11, PKS_1127-14, H1426+428, JS6_0560+2523, GRS_1015+105_4CE_11544_3.0648_9_12_1348+306_PKS0346-27
CygnusX3, mkn335, TXS_1700+685, GB6J0316+0904, 40, 51, 17, 1ES_2344 B2_2114+33, 4FGL_J1103.0+1157, S4_0954+65, MG1J0_114+1051, GB6_	1+514, PKS_1424+240, IC310, SN2023ixf, PKS_0829+046, PG1246+586, RGB_J2056+496, J1040+0617, B2_1811+31, CygX1, 3FGLJ1804.5-0850, PKS_0735+17, 3c279,
SDSS_J1206+4332, 0420-014, PKS_2032+107, 1ES06[7+250, PKS2144+00 TXS_0025+197, PKS1749+096, OT355, PKS_1622_26, T50033+595, 1ES2 PKS_0336-01, B3_1307+433, Fermi J2101+5806[TON116, JMN J1606-03	92, S41800+44, QSO_u1650+4251, 3C380, HS2209+1914, FermJ1544-0649, 4C+38.41, 1037+521, PG1115+080, 3FGLJ0115.8+2519, S4_0814+42, TXS_2241+406, OL_256, 35, PKS 1502+106, OC 457, TXS 0730+504, TXS1100+122, PKS 0837+012, 1ES1727+502.
GB6_J0114+1325, OV_591, 2FHL0600.2+1243, PK51413+135, GB6_J01544 B2_0748+33 show no significant detection.	+0823, B2_0234+28, OJ014, GB6_11058+2817, S30218+35, OS300, TXS_0128+554,
Moreover the LAT detected these HE photons: CrabNebula	
1 front photon of 31 GeV at 0.05 deg	

Forwarded by Dr. Francesco Longo

- Monitoring since ~ satellite launch (HE emitter + TeV candidate)
- Enhanced HE (4LAC, *Ajello et al. 2020*) => MAGIC proposals

• 2022

1 back photon of 82 GeV at 0.11 deg

TON 116 by Fermi-LAT

[magic_agn] Fwd: Fermi-Lat Analysis Da 18:00:00 D	aily Report - 2024-06-04 18:00:00 2024-06-05
PSR_J2021+4026 Spectral index = -2.15 +/- 0.13 TS = 80.1 Flux (100MeV-500 GeV) = 1.54 +/- 0.31 e-06 ph cm*-2 s*-1	TON 116
The analyses on: mkn501 (TS = 20.3), PG1553+113 (TS = 21.7), 3c273 (TS = 18.4), OP313 4C-25.01, B3_2247+381, 551044+71, TXS_2320+343, NGC, 4278, R3.011 008, pks1222, MS1212+425, TXS_1515-273, OSC2237+0305, AD(25+16) CRATES_11558+5625, TXS0506+056, 3FGLJ0156.3+3913, PKS1406.940, 1ES1216+303, 3FGLJ0627.9+1517, ngc1275, OQ_530, 3c669,5507,61, 1WH 4C-012.8, TXS0637-128, 2FC11604 6+5710, PKS1509+002, SX1109+22, CygnusX3, mkn335, TXS_1700+685, GB6J0316+0904, 40, 54.71, 1ES_234- B2_2114+33, 4FGL_1103.0+1157, S4_9654+65, MG114, 144+1051, GB6_ DSS_121024+332, 042-0014, PKS_2032+1071, 1ES064-020, PKS2144-01 TXS_0025+197, PKS1749+096, OT355, PKS_1622.24, TS0033+595, 1ES2 PKS_0336.01, B3_1307+433, Fermi_12101+5806 (T0N116, MN_166-03 GB6_20114+1325, OV_591, 2F1L0600.2+1243, PKS104051135, GB6_10154 B2_0748+33 show no significant delection.	IS = 18.8), 1608+656, 3C345, 1ES1218+304, 11H_1515+660, RGB1417+257, RS_Ophi, 10.5+2133, 4KS_1441+25, 0.0957+661, TX50059+881, TX51801+253, SC_12.291, PKS1510- 10.5-24, 24, FGL_10955, 1+3551, GB6_J0043+3426, 1ES_0229+200, GB_1310+487, ON246, PKS2247-131, 1ES_1959+650, 1A_0535+262, PKS2345-16, B2_2234_28A, SPJ104516.2+275133, QSO_B1600+4344, 0.0287, TC0t, 4C50+11, PKS_1127-14, H1426+428, 366_J0540+56232, GRS_1915+105, 4FGL1544 3.0649, B2_1348+30B, PKS20346-27, 4+514, PKS_1424+240, IC310, SN2023wf, PKS_0829+046, PG1246+586, RGB_J2056+496, J1040+0617, B2_1811+31, CygX1, 3FGLJ1804 5-0850, PKS_0735+17, 3C279, 92, S41800+44, QSO_J1650+4251, SC380, HS2209+114, FermiI5454-0649, 4C-38.41, 2037+521, PG1115+080, 3FGLJ0115, 8+2519, S4_0814+42, TXS_2241+406, OL_256, 53, PKS_1502+106, OC_457, TXS_0730+504, TXS1100+122, PKS_0837+012, 1ES1727+502, +0823, B2_0234+28, OJ014, GB6_J1058+2817, S30218+35, OS300, TXS_0128+554,
Moreover the LAT detected these HE photons: CrabNebula	

Forwarded by Dr. Francesco Longo

- Monitoring since ~ satellite launch (HE emitter + TeV candidate)
- Enhanced HE (4LAC, *Ajello et al. 2020*) => MAGIC proposals
- 2022 → Γ≈ 1.75, F_{1GeV}≈ 1.64 MeV cm⁻² s⁻¹, E_{p,c}≈ 70 GeV (very fast analysis)
 - LogParabola (LP) spectrum (4FGL, Abdollahi et al. 2022)

1 back photon of 82 GeV at 0.11 deg

TON 116 by Fermi-LAT

PSR_J2021+4026	
Spectral index = -2.15 +/- 0.13	
IS = 80.1 Flux (100MoV 600 CoV) = 1.54 + (-0.21 - o.06 pb cm0.2 c0.1	ION 116
That (100000-000 000) = 1.04 0-0.01 0-00 pit cit -2.3 -1	
The analyses on:	V /
mkn501 (TS = 20.3), PG1553+113 (TS = 21.7), 3c273 (TS = 18	8.4), OP313 (IS = 18.8), 1608+656, 3C345, 1ES1218+304, 1H_1515+660, RGB1417+257, RS_Ophi,
4C+25.01, B3_2247+381, S51044+71, TXS_2320+343, NGC_42	278, RX_01110.5+7,33, KS_1441+25, Q0957+561, TXS0059+581, TXS1801+253, 5C_12.291, PKS1510-
089, pks1222, MS1221+2452, TXS_1515-273, QSO2237+0305,	AQ235+1614C_2V2, 4FGL_J0955.1+3551, GB6_J0043+3426, 1ES_0229+200, GB_1310+487,
CRATES_J1558+5625, TXS0506+056, 3FGLJ0156.3+3913, PK	21406-276, ON246, PKS2247-131, 1ES_1959+650, 1A_0535+262, PKS2345-16, B2_2234_28A,
1ES1215+303, 3FGLJ0627.9-1517, ngc1275, OQ_530, 3c66a/s	50776, 1WHSPJ104516.2+275133, QSO_B1600+4344, OJ287, TCrb, 4C50+11, PKS_1127-14, H1426+428,
4C+01.28, TXS0637-128, 2FGL1604.6+5710, PKS1509+027 S	20109+22, GB6_J0540+5823, GRS_1915+105, 4FGLJ1544.3-0649, B2_1348+30B, PKS0346-27,
CygnusX3, mkn335, TXS_1700+685, GB6J0316+0904, 40551	.7, 1ES_2344+514, PKS_1424+240, IC310, SN2023IXT, PKS_0829+046, PG1246+586, RGB_J2056+496,
SDSS_11206+4332_0420_014_DKS_2032+107_1ES06_+250	PK\$21/4±002_\$41800±44_OSO_1650±4251_3C380_H\$2200±1014_Eermi11544_0640_4C±38.41
TXS_0025+197_PKS1749+096_0T355_PKS_1622-2	13595 1ES2037+521 PG1115+080 3EGL0115 8+2519 S4 0814+42 TXS 2241+406 OL 256
PKS 0336-01. B3 1307+433. Fermi J2101+5806 TON116. M	N J1606-0353. PKS 1502+106. OC 457. TXS 0730+504. TXS1100+122. PKS 0837+012. 1ES1727+502.
GB6 J0114+1325, OV 591, 2FHL0600.2+1243, PK51413+135,	GB6 J0154+0823, B2 0234+28, OJ014, GB6 J1058+2817, S30218+35, OS300, TXS 0128+554,
B2_0748+33 show no significant detection.	
Moreover the LAT detected these HE photons:	
CrabNebula	
1 front photon of 31 GeV at 0.05 deg	Forwarded by Dr. Francesco Longo

- Monitoring since ~ satellite launch (HE emitter + TeV candidate)
- Enhanced HE (4LAC, *Ajello et al. 2020*) => MAGIC proposals
 - 2022 → Γ≈ 1.75, F_{1GeV}≈ 1.64 MeV cm⁻² s⁻¹, E_{p,c}≈ 70 GeV (very fast analysis)
 - LogParabola (LP) spectrum (4FGL, Abdollahi et al. 2022)

Taken advantage of long observation history of the source

2008-2023 (15-year) period | 2021-2023 (MAGIC) period

Andrea Lorini

PhD Thesis

TON 116 by Fermi-LAT (2008-2023)

E range: 300 MeV – 500 GeV; N_{bin} /decade: 10; Rol/bin width: 10°/0.1°; Zenith cuts: standard; Event class/type: 128 (point-like) / 3 (front+back); Models: isotropic, gal. diffuse, 4FGL-DR3; Likelihood zone: 15°

Andrea Lorini

TON 116 by Fermi-LAT (2008-2023)

E range: 300 MeV – 500 GeV; N_{bin} /decade: 10; Rol/bin width: 10°/0.1°; Zenith cuts: standard; Event class/type: 128 (point-like) / 3 (front+back); Models: isotropic, gal. diffuse, 4FGL-DR3; Likelihood zone: 15°

Andrea Lorini

PhD Thesis

TON 116 by Fermi-LAT (2021-2023)

E range: 300 MeV – 500 GeV; N_{bin} /decade: 10; Rol/bin width: 10°/0.1°; Zenith cuts: standard; Event class/type: 128 (point-like) / 3 (front+back); Models: isotropic, gal. diffuse, 4FGL-DR3; Likelihood zone: 15°

Andrea Lorini

TON 116 by Fermi-LAT (2021-2023)

E range: 300 MeV – 500 GeV; N_{bin} /decade: 10; Rol/bin width: 10°/0.1°; Zenith cuts: standard; Event class/type: 128 (point-like) / 3 (front+back); Models: isotropic, gal. diffuse, 4FGL-DR3; Likelihood zone: 15°

Again, spectral trend consistent with:

<u>Power-law with exponential cut-off (PLEC)</u>

$$\frac{dN}{dE} = N_0 \cdot \left(\frac{E}{10^3 \text{ MeV}}\right)^{-\gamma} \cdot \exp[-(E - E_b)/p_1]$$

Andrea Lorini

TON 116 by Fermi-LAT (recap)

TON 116 by Fermi-LAT (recap)

Particularly low activity (SED) also preventing VHE detection (but still possible in case of flare...)

15 years

2021-2023

Andrea Lorini

PhD Thesis

TON 116 by Swift-XRT

10 "visits" on the source in the 2021-2023 period

9 in Mar 2021 + 1 in Mar 2022, ~ 1.6 ks duration (~ 27 min) 1 previously discarded due to scarce time (2021-04-02)

Photon Counting (PC) readout mode

Events within R ~ 6 pixels from the centre excluded to avoid pile-up occurrence; signal up to ~ 30 pixels, compared with PSF

Dedicated analysis software in the 0.2 - 10 keV range

xspec (HEASoft v.6.32.1) with ancillary files for detector response

Swift Se	Master Catalog earch radius us	ter Catalog (swiftmastr) Bulletin https://heasarc.gsfc.nasa.gov/db-perl/W3Browse/w3table.pl											
Select	Related Links	<u>Services</u>	name	obsid	₩ 中 ①	<mark>dec</mark> ↓↓	<u>start time</u>	processing dat	e <u>xrt exposure</u> United Texts and the second secon	uvot exposure	bat exposure ↓↑ [s]	archive date	<u>Search Offset</u> ↓↑↑ [*]
	BAT UVOT XRT	ORNSDB	TXCVN	00090484001	12 44 36.19	+36 45 17.2	2010-04-08 16:46:00	2016-07-11	4488.16200	4480.38100	4551.00000	2010-04-19	24.261 (TON 116)
€.□	BAT UVOT XRT	ORNSDB	TXCVN	00090484002	12 44 33.79	+36 45 13.7	2010-04-21 06:28:00	2016-07-12	3420.78900	3416.20100	3488.00000	2010-05-02	23.888 (TON 116)
• □	BAT UVOT XRT	ORNSDB	TXCVN	00090484004	12 44 39.89	+36 43 47.2	2010-05-18 04:21:00	2016-07-13	2861.86000	2859.82200	2912.00000	2010-05-29	23.742 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445002	12 43 12.44	+36 30 08.7	2010-10-19 02:25:59	2016-08-15	2403.15100	2397.25500	2538.00000	2010-10-30	2.413 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445001	12 43 16.40	+36 28 29.6	2009-02-13 20:37:00	2015-12-27	2143.72100	2071.67300	2196.00000	2009-02-24	1.058 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445028	12 43 13.17	+36 27 59.7	2024-01-06 04:15:55	2024-01-16	2141.23400	2110.16600	2172.00000	2024-01-17	0.275 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445004	12 43 15.82	+36 29 08.3	2017-12-27 00:24:57	2018-01-06	2075.93700	2060.72800	2090.00000	2018-01-07	1.536 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445027	12 43 14.92	+36 26 22.4	2022-03-09 01:17:36	2022-03-19	1978.96300	1904.96400	2000.00000	2022-03-20	1.429 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445016	12 43 14.36	+36 28 14.7	2021-02-18 10:35:36	2021-02-28	1955.68500	1954.23900	1873.00000	2021-03-01	0.607 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445017	12 43 06.79	+36 28 56.0	2021-02-18 08:54:34	2021-02-28	1880.40800	1879.62300	2038.00000	2021-03-01	1.693 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445021	12 43 12.39	+36 27 00.6	2021-02-22 11:20:35	2021-03-04	1699.41800	1698.69400	1706.00000	2021-03-05	0.727 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445019	12 43 19.30	+36 27 49.2	2021-02-20 09:58:35	2021-03-02	1689.38800	1689.60300	1697.00000	2021-03-03	1.323 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445018	12 43 14.04	+36 29 33.4	2021-02-19 11:40:35	2021-03-01	1671.83600	1670.57200	1678.00000	2021-03-02	1.842 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445020	12 43 21.42	+36 24 24.6	2021-02-21 11:27:34	2021-03-03	1633.85600	1634.53800	1642.00000	2021-03-04	3.754 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445023	12 43 10.93	+36 26 30.9	2021-03-12 08:05:35	2021-03-22	1429.59900	1428.28900	1444.00000	2021-03-23	1.271 (TON 116)
• □	BAT UVOT XRT	QRNSD	TXCVN	00091453007	12 44 37.83	+36 44 38.9	2013-03-10 05:58:59	2017-11-04	1387.57100	1381.92800	1413.00000	2013-03-21	24.036 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445025	12 43 10.13	+36 26 31.9	2021-03-19 08:52:35	2021-03-29	1368.18100	1367.67400	1376.00000	2021-03-30	1.311 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445006	12 43 15.52	+36 27 56.1	2018-01-24 13:44:57	2018-02-03	1318.83500	1311.03100	1326.00000	2018-02-04	0.595 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445024	12 43 10.01	+36 25 40.9	2021-03-16 09:13:35	2021-03-26	1303.16400	1300.77000	1309.00000	2021-03-27	2.124 (TON 116)
• □	BAT UVOT XRT	QRNSD	TXCVN	00091453008	12 44 40.75	+36 43 44.4	2013-03-25 16:10:59	2017-11-06	1278.22800	1278.10900	1285.00000	2013-04-05	23.839 (TON 116)
• □	BAT UVOT XRT	QRNSDB	1RXSJ124312.5	00038445010	12 43 14.83	+36 26 45.9	2018-03-21 15:03:57	2018-04-23	1119.68200	1104.87000	1133.00000	2018-04-01	1.057 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445014	12 42 57.16	+36 27 47.3	2018-05-02 15:54:56	2018-05-12	1118.20300	1109.55800	1124.00000	2018-05-13	3.132 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445008	12 43 23.25	+36 26 15.1	2018-02-21 14:17:57	2018-03-03	1020.46900	1012.14900	1027.00000	2018-03-04	2.583 (TON 116)
• □	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445007	12 43 16.68	+36 27 26.3	2018-02-07 18:56:57	2018-02-17	1007.93000	998.56700	1013.00000	2018-02-18	0.846 (TON 116)
•	BAT UVOT XRT	QRNSDB	1RXSJ124312.5	00038445003	12 43 18.62	+36 28 51.7	2017-12-13 17:12:57	2017-12-23	1002.91600	993.73500	1008.00000	2017-12-24	1.634 (TON 116)

TON 116 by Swift-XRT

10 "visits" on the source in the 2021-2023 period

9 in Mar 2021 + 1 in Mar 2022, ~ 1.6 ks duration (~ 27 min) 1 previously discarded due to scarce time (2021-04-02)

Photon Counting (PC) readout mode

Events within R ~ 6 pixels from the centre excluded to avoid pile-up occurrence; signal up to ~ 30 pixels, compared with PSF

<mark>Swift I</mark> Se	Swift Master Catalog (swiftmastr) Bulletin Search radius used: 25.00' https://heasarc.gsfc.nasa.gov/db-perl/W3Browse/w3table.pl												
Select	Related Links	Services	name 几介	obsid	лф	<mark>dec</mark>	<u>start time</u>	processing dat	e xrt exposure	uvot exposure	bat exposure	archive date	Search Offset
	DAT UNCOT YOT		TYCUN	000004040004	42 44 26 40	100 45 47 0	2040.04.09.46.46.00	2046 07 44	4400 46200	4400 20100		2010.04.10	
	DAT UNOT XRT		TXCVN	000004040001	12 44 30.18	100 45 10 7	2010-04-08 10:40:00	2010-07-11	4488.10200	4480.38100	4331.00000	2010-04-18	24.201 (TON 110)
	BAT UNOT YPT		TYCVN	00000404002	12 44 33.18	+26 42 47 2	2010-04-21 00:28:00	2016 07 12	2061 06000	2950 92200	2012 00000	2010-05-02	23.388 (TON 116)
e n	BAT UNOT XRT		100010	00030404004	12 49 33.03	+26 20 00 7	2010-03-18 04.21.00	2010-07-13	2402 15100	2003.02200	2512.00000	2010-03-28	2.142 (TON 110)
	BAT UNOT XRT		1000 1404040 5	00030445002	12 43 12.44	100 00 00.7	2010-10-19 02.25.55	2010-08-15	2403.15100	2391.23300	2558.00000	2010-10-30	2.413 (TON 110)
	BAT UNOT XRT		1RX33124312.5	00030445030	12 43 10.40	100 20 20.0	2003-02-13 20:37:00	2013-12-27	2143.72100	20/1.0/300	2130.00000	2003-02-24	0.075 (TON 110)
	BAT UNOT YPT		1000 1124312.5	00030445020	12 43 13.17	+30 27 59.7	2024-01-00 04.15.55	2024-01-10	2141.23400	2060 72800	2000.00000	2024-01-17	1.526 (TON 116)
	BAT UVOT ART		1RASJ124312.5	00000445004	12 43 15.02	100 29 00.0	2017-12-27 00.24.57	2010-01-00	2015.93100	2060.72800	2090.00000	2010-01-07	1.556 (TON 116)
	BAT UVOT XRT	ORNSDB	1RASJ124312.5	00038445027	12 43 14.92	+30 20 22.4	2022-03-09 01:17:30	2022-03-19	1978.90300	1904.96400	2000.00000	2022-03-20	1.429 (TON 116)
	BAT UNOT XRT		1RA33124312.3	00030445047	12 43 14.30	100 20 14.7	2021-02-18 10.35.30	2021-02-28	1955.08500	1934.23900	1873.00000	2021-03-01	0.007 (TON 110)
	BAT UNOT XRT		1DXS 1124312.5	00030445017	12 43 00.73	+30 28 30.0	2021-02-18 08.04.34	2021-02-28	1600.41900	1609 60400	1706 00000	2021-03-01	0.727 (TON 116)
	DAT UNOT XOT		1000 1404040 5	00000445040	12 40 12.00	100 07 40 0	2021-02-22 11.20.33	2021-03-04	1033.41800	1098.09400	1700.00000	2021-03-03	0.727 (TON 110)
	BAT UVOT XRT		1DX0 1124312.5	00030445019	12 43 19.30	100 27 49.2	2021-02-20 09.08.00	2021-03-02	1009.30000	1670 57300	1670.00000	2021-03-03	1.323 (TON 116)
	BAT UNOT XRT		1RA3J124312.5	00000445000	12 43 14.04	100 29 33.4	2021-02-19 11:40:33	2021-03-01	1071.83000	1070.57200	1078.00000	2021-03-02	1.842 (TON 110)
	BAT UVOT XRT	ORNSDB	1RASJ124312.5	00038445020	12 43 21.42	+30 24 24.0	2021-02-21 11.27.34	2021-03-03	1033.85000	1634.53800	1042.00000	2021-03-04	3.754 (TON 116)
	BAT UVOT XRT	OKNSDB	TXOURI	00038445023	12 43 10.93	+30 20 30.9	2021-03-12 08.05.35	2021-03-22	1429.59900	1428.28900	1444.00000	2021-03-23	1.2/1 (TON 116)
	BAL UVOT XRT	ORNSD		00091453007	12 44 37.83	+30 44 38.9	2013-03-10 05:58:58	2017-11-04	1387.57100	1381.92800	1413.00000	2013-03-21	24.036 (TON 116)
	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445025	12 43 10.13	+30 20 31.9	2021-03-19 08:52:35	2021-03-29	1308.18100	1367.67400	1376.00000	2021-03-30	1.311 (TON 116)
	BAT UVOT XRT	ORNSDB	1RXSJ124312.5	00038445006	12 43 15.52	+30 27 50.1	2018-01-24 13:44:57	2018-02-03	1318.83500	1311.03100	1326.00000	2018-02-04	0.595 (TON 116)
	BAT UVOT XRT	OKNSDB	TXO 01	00038445024	12 43 10.01	+30 25 40.9	2021-03-16 09.13.35	2021-03-26	1303.10400	1300.77000	1309.00000	2021-03-27	2.124 (TON 116)
	BAL UVOT XRT	UKNSD		00091453008	12 44 40.75	+30 43 44.4	2013-03-25 16:10:59	2017-11-06	1278.22800	1278.10900	1285.00000	2013-04-05	23.839 (TON 116)
	DAT UVOT XRT		IRASJ124312.5	00038445010	12 43 14.83	+30 20 45.9	2010-03-21 15:03:57	2018-04-23	1119.08200	1104.87000	1133.00000	2018-04-01	1.057 (TON 116)
	BAT UVOT XRT	UKNSDB	1KASJ124312.5	00038445014	12 42 57.16	+30 27 47.3	2018-05-02 15:54:56	2018-05-12	1118.20300	1109.55800	1124.00000	2018-05-13	3.132 (TON 116)
	BAT UVOT XRT	UKNSDB	1KASJ124312.5	00038445008	12 43 23.25	+30 26 15.1	2018-02-21 14:17:57	2018-03-03	1020.46900	1012.14900	1027.00000	2018-03-04	2.583 (TON 116)
	BAL UVOT XRT	OKNSDB	1KXSJ124312.5	00038445007	12 43 16.68	+36 27 26.3	2018-02-07 18:56:57	2018-02-17	1007.93000	998.56700	1013.00000	2018-02-18	0.846 (TON 116)
40	BAL UVOT XRI	ORNEDB	1KASJ124312.5	00038445003	12 43 18.62	+36 28 51.7	2017-12-13 17:12:57	2017-12-23	1002.91600	993.73500	1008.00000	2017-12-24	1.634 (TON 116)

Dedicated analysis software in the 0.2 - 10 keV range

xspec (HEASoft v.6.32.1) with ancillary files for detector response

TON 116 SED by Swift-XRT

	TON 116		
_		χ² / ndf	12.65 / 10
°,		Prob	0.2438
n-2	_	p0	2.168e-12 ± 6.544e-14
cu		p1	-0.3173 ± 0.04191
E ^{2*} F _E [er		-	
	Total 2021-2022		
10 ⁻¹²		1	
	1		Energy [keV]

Obs. ID	Archive Date	Exposure [ks]	k_x [10 ⁻¹² erg cm ⁻² s ⁻¹]	p_x
38445016	2021-03-01	2.0	2.9 ± 0.2	2.1 ± 0.2
38445017	2021-03-01	1.9	2.2 ± 0.3	2.4 ± 0.2
38445018	2021-03-02	1.7	3.2 ± 0.3	2.0 ± 0.2
38445019	2021-03-03	1.7	1.7 ± 0.2	2.6 ± 0.2
38445020	2021-03-04	1.6	2.1 ± 0.2	2.0 ± 0.2
38445021	2021-03-05	1.7	1.7 ± 0.2	2.4 ± 0.2
38445023	2021-03-23	1.4	3.2 ± 0.3	2.2 ± 0.2
38445024	2021-03-27	1.3	2.4 ± 0.4	2.6 ± 0.2
38445025	2021-03-30	1.4	2.1 ± 0.3	2.5 ± 0.3
38445027	2022-03-20	2.0	1.1 ± 0.2	2.3 ± 0.4

$$F(E) = k_x \left(\frac{E}{E_x}\right)^{t_x}$$

					T		•		٠
	n		0	0				n	
H				1					
		-	-	~	-	-			-

TON 116 SED by Swift-XRT

Andrea Lorini

TON 116 SED by Swift-XRT

TON 116 daily index by Swift-XRT

The soft-X slope is also found to be ~ constant over time

$$p_x = \begin{cases} \alpha_x D + p_{x,q} \\ p_{x,q} \end{cases}$$

Method	α_x [10 ⁻⁴ dy ⁻¹]	$p_{x,q}$	χ^2_{np}/dof	p-val _{sf}	χ^2_{sp}/dof	p-val _{chi}	χ^2_{crit}
1-polyfit	1.26 ± 6.99	2.32 ± 0.09	0.184/7	1.000	0.184/7	1.000	14.07
1-curve_fit	1.26 ± 6.99	2.32 ± 0.09	0.184/7	1.000	0.184/7	1.000	14.07
0-polyfit	0	2.33 ± 0.08	0.185/8	1.000	0.185/8	1.000	15.51
0-curve_fit	0	2.33 ± 0.08	0.185/8	1.000	0.185/8	1.000	15.51

TON 116 daily index by Swift-XRT

The soft-X slope is also found to be ~ constant over time

$$p_x = \begin{cases} \alpha_x D + p_{x,q} \\ p_{x,q} \end{cases}$$

Method	α_x	$p_{x,q}$	χ^2_{np}/dof	p-val _{sf}	χ^2_{sp}/dof	p-val _{chi}	χ^2_{crit}
	10^{-4} dy^{-1}	\frown					
1-polyfit	1.26 ± 6.99	2.32 ± 0.09	0.184/7	1.000	0.184/7	1.000	14.07
1-curve_fit	1.26 ± 6.99	2.32 ± 0.09	0.184/7	1.000	0.184/7	1.000	14.07
0-polyfit	0	2.33 ± 0.08	0.185/8	1.000	0.185/8	1.000	15.51
0-curve_fit	0	2.33 ± 0.08	0.185/8	1.000	0.185/8	1.000	15.51

Linear fit (generic slightly better than constant):

α_x ≈ 1.3 · 10⁻⁴ /day ⇒ still negligible in our case (384 days)
p_{x,q} ≈ 2.3 ⇒ mean slope (basically invariant)

$$\chi^2 = \sum_{i=1}^{N} \frac{(p_{xi,obs} - p_{xi,exp})^2}{p_{xi,exp}}$$

TS for goodness-of-fit (numpy and scipy routines)

Andrea Lorini

TON 116 by OSN

Data-taking period: 23rd Feb 2022 – 12th Feb 2023

Telescope(s): T090, T150

Scientific outcomes: R mag values

i) <u>Galactic extinction correction</u> (true magnitude from observed magnitude)

 $m_{R,t} = m_{R,o} - (A_R) \rightarrow 0.026 \text{ mag} (Landolt R bandpass, Schlafly & Finkbeiner 2011)$

ii) True magnitudes $(m_{R,t}) \longrightarrow flux$ densities $(f_{R,t})$ conversion (Bessell et al. 1998)

MagToFluxDensity_bessell98 method (PyAstronomy.pyasl python package)

Andrea Lorini

TON 116 Light Curve by OSN

39 data points from a 1-per-day average:

$$f_R = \frac{\sum_{i=1}^n f_{R,i}}{n} \qquad \Delta f_R = \frac{1}{n} \sqrt{\sum_{i=1}^n (\Delta f_{R,i})^2}$$

Flux value

```
Flux error
```

TON 116 Light Curve by OSN

39 data points from a 1-per-day average:

TON 116 Light Curve by OSN

OSN + Swift-XRT

Probing the synchrotron bump (Optical + X band)

Fermi-LAT + MAGIC

Probing the inverse-Compton bump (HE + VHE γ band)

• No Compton dominance (as expected for BL Lacs, *Ghisellini et al. 2017*)

• $v_{p,s} \gtrsim 10^{16} \text{Hz} \rightarrow \text{HBL}$ nature (in agreement with 4LAC *Fermi* catalogue) $v_{p,c} \lesssim 10^{25} \text{Hz} \rightarrow \text{Compton peak before 100 GeV}$ (as seen by *Fermi*)

Emission highly suppressed at the most extreme energies (< 1 TeV)

Broadband SED interpretation

Can we reach the model providing the best explanation?

Broadband SED interpretation

Can we reach the model providing the best explanation?

Andrea Lorini

PhD Thesis

agnpy-sherpa fit results

SynchrotronSelfComptonModel method initializations:

- PL/BPL (± ULs) as e energy distribution
- z = 0.5
- sherpa wrapper for data handling

agnpy-sherpa fit results

SynchrotronSelfComptonModel method initializations:

- PL/BPL (± ULs) as e- energy distribution
- z = 0.5
- sherpa wrapper for data handling

Power-law case

For $\nu < 10^{25}$ Hz \longrightarrow PL (- ULs) \approx PL (+ ULs) For $\nu > 10^{25}$ Hz \longrightarrow PL (+ ULs) improving the VHE fit But EHBL behaviour suggested ($\nu_{p,s} > 10^{17}$ Hz)...

Broken Power-law case

Harder rise & decrease of synchrotron bump Bumps' connection at higher E, harder rise of IC bump Good fit also at VHE even if ULs not included!

MMDC fit results

Main ingredients:

- Leptonic SSC one-zone model
- Simple PL as electron energy distribution
- All TON 116 broadband datasets w/o ULs (HE, VHE), no TON 116 archival data (mostly out of 2021-2023)
- EBL absorption considered (*Dominguez et al. 2011*)

MMDC fit results

Main ingredients:

- Leptonic SSC one-zone model
- Simple PL as electron energy distribution
- All TON 116 broadband datasets w/o ULs (HE, VHE), no TON 116 archival data (mostly out of 2021-2023)
- EBL absorption considered (*Dominguez et al. 2011*)

Overall trend very similar to agnpy BPL model (smallest slope *p*, close to the first of BPL)

VHE strong suppression confirmed

Andrea Lorini

PhD Thesis

Normalization to the **total numerical density** No R_b reported, but **t_{var} predicted -> 0.5-10 h**

R_b reported, but no goodness-of-fit information

Normalization to the **total numerical density** No R_b reported, but **t_{var} predicted -> 0.5-10 h**

R_b reported, but no goodness-of-fit information

Overall agreement (fluctuations within ~ 1 order of magnitude mostly) What about the literature...?

Literature check

PKS 1424+240 (Aleksić et al. 2014)

	p_1	p_2	δ_D	γ_{min}	$\frac{\gamma_{br}}{[\cdot 10^4]}$	$\begin{array}{c} \gamma_{max} \\ [\cdot 10^7] \end{array}$	<i>B</i> [G]	k [cm ⁻³]	R_b [cm]	$L_{e,kin}$ $[erg s^{-1}]$
1-zone (no radio)	$\begin{array}{c} 1.7 \\ 1.9 \end{array}$	$3.7 \\ 3.9$	131 70	$\frac{16}{260}$	$2.6 \\ 3.2$	3.9 89	$\begin{array}{c} 0.006 \\ 0.018 \end{array}$	$\frac{50}{200}$	$\begin{array}{c} 5 \cdot 10^{16} \\ 6.5 \cdot 10^{16} \end{array}$	$\begin{array}{c} 2.1 \cdot 10^{46} \\ 7.0 \cdot 10^{45} \end{array}$

HBL detected by MAGIC (after *Fermi* and VERITAS)

z ≥ 0.604 (Furniss et al. 2013)

	p_1	p_2	δ_D	γ_{min}	$\frac{\gamma_{br}}{[\cdot 10^4]}$	γ_{max} $[\cdot 10^5]$	B [G]	k $[cm^{-3}]$	$\frac{R_b}{[\cdot 10^{15} \text{ cm}]}$
PL (no ULs)	2.54	_	100	1.0	_	2.1	0.0479	$5.50\cdot 10^5$	3.86
PL (+ ULs)	2.54	_	23.1	1.0	_	2.1	0.207	$1.38\cdot 10^5$	16.2
BPL (no ULs)	2.16	3.68	19.4	100	3.89	10	0.469	$7.94\cdot10^{-7}$	11.4

p_1	p_2	δ_D	γ_{min}	γ_{br}	γ_{max}	<i>B</i> [G]	R_b [cm]	$\frac{L_e}{[\text{erg s}^{-1}]}$
2.11	_	22.0	256	_	$2.57\cdot 10^5$	0.0929	$1.25\cdot 10^{16}$	$2.61\cdot 10^{43}$

Andrea Lorini

PhD Thesis

Literature check

PKS 1424+240 (<u>Aleksić et al. 2014</u>)

	p_1	p_2	δ_D	γ_{min}	$\frac{\gamma_{br}}{[\cdot 10^4]}$	$\frac{\gamma_{max}}{[\cdot 10^7]}$	B [G]	k [cm ⁻³]	$\begin{array}{c} R_b \\ [\mathrm{cm}] \end{array}$	$L_{e,kin}$ $[erg s^{-1}]$
1-zone (no radio)	$\begin{array}{c} 1.7\\ 1.9 \end{array}$	$3.7 \\ 3.9$	131 70	$\frac{16}{260}$	$2.6 \\ 3.2$	$3.9 \\ 89$	$\begin{array}{c} 0.006 \\ 0.018 \end{array}$	50 200	$\begin{array}{c} 5 \cdot 10^{16} \\ 6.5 \cdot 10^{16} \end{array}$	$\begin{array}{c} 2.1 \cdot 10^{46} \\ 7.0 \cdot 10^{45} \end{array}$

HBL detected by MAGIC (after *Fermi* and VERITAS)

z ≥ 0.604 (Furniss et al. 2013)

	p_1	p_2	δ_D	γ_{min}	$\frac{\gamma_{br}}{[\cdot 10^4]}$	γ_{max} $[\cdot 10^5]$	B [G]	k $[cm^{-3}]$	$\frac{R_b}{[\cdot 10^{15} \text{ cm}]}$
PL (no ULs)	2.54	_	100	1.0	_	2.1	0.0479	$5.50\cdot 10^5$	3.86
PL (+ ULs)	2.54	_	23.1	1.0	_	2.1	0.207	$1.38\cdot 10^5$	16.2
BPL (no ULs)	2.16	3.68	19.4	100	3.89	10	0.469	$7.94\cdot10^{-7}$	11.4

p_1	p_2	δ_D	γ_{min}	γ_{br}	γ_{max}	В [G]	$\begin{array}{c} R_b \\ [\text{cm}] \end{array}$	$\begin{array}{c} L_e \\ [\mathrm{erg} \ \mathrm{s}^{-1}] \end{array}$
2.11	_	22.0	256	_	$2.57\cdot 10^5$	0.0929	$1.25\cdot 10^{16}$	$2.61\cdot 10^{43}$

Andrea Lorini

PhD Thesis

Conclusions

✓ Thesis work on investigation of possible outliers of the blazar sequence → TON 116 good candidate if $z \approx 1$ (*Ajello et al. 2020*), but $z \ge 0.483$ (*Paiano et al. 2017*)

✓ 1st VHE observations ever with MAGIC (2021–2023), excess hint for 2021 + 2022, but no detection \rightarrow no new z constraint (*Prandini et al. 2010*) possible

Conclusions

✓ Thesis work on investigation of possible outliers of the blazar sequence → TON 116 good candidate if $z \approx 1$ (*Ajello et al. 2020*), but $z \ge 0.483$ (*Paiano et al. 2017*)

✓ 1st VHE observations ever with MAGIC (2021-2023), excess hint for 2021 + 2022, but no detection \rightarrow no new z constraint (*Prandini et al. 2010*) possible

 \checkmark Fermi-LAT, Swift-XRT, OSN observations also combined \rightarrow broadband SED (~ constant low state)

✓ 1st emission model ever for TON 116 SED via innovative agnpy-sherpa and MMDC tools

Leptonic 1-zone SSC model Broken/Simple power-law as e⁻ distribution

BPL best-fit model (at VHE also, despite no ULs) PL model, trend similar to BPL Strong VHE suppression confirmed

✓ Thesis work on investigation of possible outliers of the blazar sequence → TON 116 good candidate if $z \approx 1$ (*Ajello et al. 2020*), but $z \ge 0.483$ (*Paiano et al. 2017*)

✓ 1st VHE observations ever with MAGIC (2021-2023), excess hint for 2021 + 2022, but no detection \rightarrow no new z constraint (*Prandini et al. 2010*) possible

Conclusions

✓ 1st emission model ever for TON 116 SED via innovative agnpy-sherpa and MMDC tools

Leptonic 1-zone SSC model Broken/Simple power-law as e⁻ distribution

BPL best-fit model (at VHE also, despite no ULs) **PL model, trend similar to BPL** Strong VHE suppression confirmed

✓ Perspectives: VHE monitoring for new distance/nature clarification (especially with CTAO)

11/07/2024

MAGIC Observations of the Blazar TON 116 in a Multi-wavelength Context

PhD candidate: Andrea Lorini Supervisor: Dr. Sofia Ventura Co-supervisor: Dr. Giacomo Bonnoli

Thank you for your attention!

Backup slides

What is an Active Galactic Nuclei?

6

4

Eventual radio jets made up by collimated ultra-high-speed particles reaching up to ~ 1 Mpc distance (relativistic effects e.g. boosting)

Central U.A.-scale Super Massive Black Hole (SMBH) of ~ $10^6 - 10^{10} M_{\odot}$

Optically-thick dusty torus (at ~ 1-100 pc) absorbing optical and UV radiation, mostly re-emitting in the far-IR

Narrow Line Region (NLR, ≤ 100 pc)
with slower (~ 300 500 km/s), more
sparse, and much less dense clumps

Broad Line Region (BLR, ~ 0.1-1 pc) with fastly-moving (~ $10^3 - 10^4$ km/s) clumps excited/ionized by disk

Sub-pc-scale accretion disk of infalling material emitting as a black-body (hotter inward)

n 1% of all known galaxies, non-thermal (accretion) radiation greatly overcomes the thermal (stars + gas + dust) one!

Andrea Lorini

PhD Thesis

Unisi DSFTA 43

5

3

2

Caveat:

small collection area (~ 1 m²) inefficient at VHE range...

Fermi-LAT

- Launched in Jun 2008 and operational since Nov 2008
- Sky monitorer in the HE γ -ray domain ($\gtrsim 20 \text{ MeV} 300 \text{ GeV}$)
- Long duty cycle (≥ 90%), large FoV (≈ 3 sr)
 - anti-coincidence scintillator rejecting background signals
 - converter tracker of tungsten plates (Z = 74) and silicon detectors hosting a produced e⁻-e⁺ pair from an incoming γ-ray
 - calorimeter measuring the e⁻-e⁺ energy losses

Breakthrough for HE sources and TeV candidates

Andrea Lorini

PhD Thesis

- Modular satellite launched in Nov 2004 to study GRBs
- Continuous MWL sky survey, ≈ 88% covered daily

Observatorio de Sierra Nevada (OSN)

IAA-CSIC

- Inaugurated in 1981 at Loma de Dìlar (03°23'05" W, 37°03'51" N), Sierra Nevada (Granada, Spain), 2896 m a.s.l.
- Two optical telescopes with Ritchey-Chrétien mirror displacement and Nasmyth focus configuration managed by IAA-CSIC

R-band (Johnson-Cousins filter, $\lambda_{ref} \approx 640.7$ nm, $\Delta \lambda_{fwhm} \approx 1580$ Å)

- Photometric data
- iop4 pipeline (*Escudero et al.* 2024)
 Polarimetric data

Andrea Lorini

PhD Thesis

Detection insights

Primary VHE γ-ray interacting with atmospheric nuclei (h ~ 10 km)

Cascade of generated e^--e^+ (pair production) and γ (bremsstrahlung)

Cherenkov pool (~ ns pulse) focused by M1 and M2 reflectors

MAGIC Analysis and Reconstruction Software (MARS)

- C++ based scripts (ROOT environment): from DAQ raw files (space/ time distribution of camera p.e.) to high-level results (e.g. SED, LC)
- Signal significance (s): statistical comparison of ON/OFF regions (*Li & Ma 1983*), Wobble being the standard observation mode
- Reconstructed quantities (by RF per MC): direction, energy, hadronness

🛕 Background to be rejected! 🛁

Andrea Lorini

PhD Thesis

TON 116 by MAGIC (2021, 2022)

Zenith: 7°-36°; DTs: Dark Extragalactic; DCMax = 3000 nA; LIDAR@9km: > 0.7; Cloudiness: < 30; En. range: LE

2021 (~ 17.8/18.7 h)

Andrea Lorini

PhD Thesis

VHE excess hint

2021+2022 (foam)

≈ 100 GeV

 $\lesssim 2.6 \sigma$

2021 (flute)

10³

10⁴

E_{est} (GeV)

PhD Thesis

Still excess in the 2021+2022 dataset?

<u>Dedicated odie execution</u> (standard/fitted ON & OFF distrib.):

$2.0 \sigma \lesssim s \lesssim 2.6 \sigma$

STATISTICS PERSONNELS

st 300 250

200

150

Andrea Lorini

10²

10⁻¹

10

P

A

TON 116 by Fermi-LAT (recap)

also preventing VHE detection (but still possible in case of flare...)

agnpy-sherpa fit results

SynchrotronSelfComptonModel method initializations:

- PL (ULs excluded/included), BPL (no ULs) as e⁻ distribution
 z = 0.5
- sherpa wrapper for data handling (ecsv format)
- Systematics added (OSN 5%, XRT & LAT 10%, MAGIC 30%)

Power-law case

For $\nu < 10^{25}$ Hz \longrightarrow PL (- ULs) \approx PL (+ ULs) For $\nu > 10^{25}$ Hz \longrightarrow PL (+ ULs) improving the VHE fit **But EHBL behaviour suggested** ($\nu_{p,s} > 10^{17}$ Hz)...

Broken Power-law case

Harder rise & decrease of synchrotron bump Bumps' connection at higher E, harder rise of IC bump Good fit also at VHE even if ULs not included!

MMDC fit results

Main ingredients:

- Leptonic SSC one-zone model
- Simple PL as electron energy distribution
- All TON 116 broadband datasets w/o ULs (HE, VHE), no TON 116 archival data (mostly out of 2021-2023)
- EBL absorption considered (*Dominguez et al. 2011*)

Overall trend very similar to agnpy BPL model (smallest slope *p*, close to the first of BPL)

VHE strong suppression confirmed

Andrea Lorini

PhD Thesis

Literature check

	M	Irk 421	PKS 15	10-089
Parameter	Gammapy	sherpa	Gammapy	sherp
	(a) B	est-fit parameters	ŝ	
$\log_{10}(\frac{k_e}{m-1})$	-7.89	-7.89	-2.06	-2.05
P1	2.06	2.06	2.00	2.00
p_2	3.54	3.54	3.16	3.16
$\log_{10}(\gamma'_{\rm b})$	4.99	4.99	3.01	3.01
$\log_{10}(B/G)$	-1.33	-1.33	-0.42	-0.42
$\delta_{\rm D}$	19.74	19.76	-	-
$\chi^2/d.o.f.$	271.2/80	271.2/80	230.5/36	230.5/3
	(b) F	ixed parameters		
Parameter	Mrk421	PKS 1510-089		
δ_D	-	25		
γ'_{min}	500	1		
Y'max	106	3×10^{4}		
$R_{\rm b}$ / cm	5.3×10^{16}	2.4×10^{16}		
θ_s	2.90°	2.22°		
r/cm	-	6×10^{17}		
$L_{\rm disc}/({\rm erg}{\rm s}^{-1})$	-	6.7×10^{45}		
η	-	1/12		
$M_{\rm BH}/M_{\odot}$	-	5.71×10^{7}		
$R_{\rm in}/R_{\rm g}$	-	6		
$R_{\rm out}/R_{\rm g}$	-	104		
for	-	0.6		
RDT / cm	-	6.5×10^{18}		
$T_{\rm DT}/{\rm K}$	-	103		
z	0.0308	0.361		

Mrk 421, Nigro et al. (2022)

Well known, TeV-emitter HBL Close, $z \approx 0.031$ (*Ulrich et al. 1975*) Lower ρ and B, larger R_b and γ_{min} PKS 1424+240, Aleksić et al. (2014)

HBL seen by *Fermi*, VERITAS, MAGIC Far, z \gtrsim 0.604 (*Furniss et al. 2013*) Lower ρ (BPL) and B, larger R_b, γ_{max} , δ_{D}

Model	$\frac{\gamma_{\min}}{[10^3]}$	γь [10 ⁴]	$\gamma_{\rm max}$ [10 ⁵]	n_1	n_2	B [G]	K [cm ⁻³]	<i>R</i> [10 ¹⁶ cm]	δ	$L_{kin(p)}$ [10 ⁴⁵ erg s ⁻¹]	$[10^{45} \text{ erg s}^{-1}]$	$[10^{43} \text{ erg s}^{-1}]$
One-zone (No radio)	0.260	3.2	8.9×10^{3}	1.9	3.9	0.018	2×10^2	6.5	70	5	7.0	3
One-zone	0.016	2.6	3.9×10^{2}	1.7	3.7	0.006	50	5	131	64	21	0.8
One-zone (Constrained)	0.004	5.3	3.2×10^{4}	2.0	4.0	0.017	1.7×10^{2}	19	40	371	11	8.8
2 zones (in)	8.0	3.9	7.0	2.0	3.1	0.033	3.1×10^{3}	4.8	30	0.07	1.2	1.1
2 zones (out)	0.6	3.0	0.5	2.0	3.0	0.033	23	190	9	1.3	2.3	159

Andrea Lorini

PhD Thesis

Literature check

PKS 1424+240 (Aleksić et al. 2014)

	p_1	p_2	δ_D	γ_{min}	$\frac{\gamma_{br}}{[\cdot 10^4]}$	$\begin{array}{c} \gamma_{max} \\ [\cdot 10^7] \end{array}$	В [G]	k [cm ⁻³]	R_b [cm]	$\begin{array}{c} L_{e,kin} \\ [\mathrm{erg} \ \mathrm{s}^{-1}] \end{array}$
1-zone (no radio)	$\begin{array}{c} 1.7 \\ 1.9 \end{array}$	$3.7 \\ 3.9$	131 70	$\frac{16}{260}$	$2.6 \\ 3.2$	3.9 89	$\begin{array}{c} 0.006 \\ 0.018 \end{array}$	$\frac{50}{200}$	$\begin{array}{c} 5 \cdot 10^{16} \\ 6.5 \cdot 10^{16} \end{array}$	$2.1 \cdot 10^{46}$ $7.0 \cdot 10^{45}$

HBL detected by MAGIC (after *Fermi* and VERITAS) with $z \gtrsim 0.604$ (*Furniss et al. 2013*):

- $\mathbf{p}_1, \mathbf{p}_2, \mathbf{\gamma}_{\min}, \mathbf{\gamma}_{br}, \delta_D$ compatible
- $\rho \sim \text{mean Log value}$

 R_b

 $[\cdot 10^{15} \text{ cm}]$

3.86

 $16.2 \\ 11.4$

- Lower B, larger R_b, γ_{max}

10 ¹⁴		p_1	p_2	δ_D	γ_{min}	$\frac{\gamma_{br}}{[\cdot 10^4]}$	γ_{max} $[\cdot 10^5]$	В [G]	k $[cm^{-3}]$
10 ²⁹	PL (no ULs) PL (+ ULs) BPL (no ULs)	2.54 2.54 2.16	_ 3.68	100 23.1 19.4	$1.0 \\ 1.0 \\ 100$	_ _ 3.89	2.1 2.1 10	$0.0479 \\ 0.207 \\ 0.469$	$\begin{array}{c} 5.50\cdot 10^5 \\ 1.38\cdot 10^5 \\ 7.94\cdot 10^{-7} \end{array}$

p_1	p_2	δ_D	γ_{min}	γ_{br}	γ_{max}	В [G]	R_b [cm]	$\begin{array}{c} L_e \\ [\mathrm{erg} \ \mathrm{s}^{-1}] \end{array}$
2.11	_	22.0	256	_	$2.57\cdot 10^5$	0.0929	$1.25\cdot 10^{16}$	$2.61\cdot 10^{43}$

Andrea Lorini

PhD Thesis