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I. Entanglement and Quantum Correlations

1) Pure Quantum States: Entanglement and Correlation Patterns

Quantum entanglement, a direct consequence of the specificities of measurement 
processes in Quantum Mechanics:  measuring a quantum object modifies its state.

First noticed by EPR in 1935, named by Schrödinger on the same year.  

Inconsistency of quantum theory (hidden variables)?

Bell’s inequalities: proof that entanglement cannot come from hidden variables.
Aspect’s experiments showed violation of Bell’s inequalities.

Of major importance in today’s quest for achieving the quantum computer.

A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”, Phys. Rev., 1935
E. Schrödinger, “Discussion of Probability Relations between Separated Systems”, Math. Proc. of the Cambridge Philo. Soc., 1935
J. S. Bell, “On the Einstein Podolsky Rosen paradox”, Physics Physique Fizika,1964
A. Aspect, P. Grangier, and G. Roger, “Experimental Tests of Realistic Local Theories via Bell’s Theorem”, Physical Review Letters, 1981
R.P. Feynman, Simulating physics with computers. Int J Theor Phys, 1982 5



Product state:
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Entangled state (here, Bell state):

A B A B A BA B
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Product state:

Measuring A pointing upward: 

does not affect the state of B.
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Measuring A pointing upward: 

does not affect the state of B.
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Entangled state (here, Bell state):

Measuring A pointing upward:

projects B onto the upward-pointing state.

A B A B A B

A A B

A B

B B
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Product state:

Measuring A pointing upward: 

does not affect the state of B.

I. Entanglement and Quantum Correlations

1) Pure Quantum States: Entanglement and Correlation Patterns

Entangled state (here, Bell state):

Measuring A pointing upward:

projects B onto the upward-pointing state.

A B A B A B

A A B

Entangled pair : measurement on A may modify the state of B.

A B

B B
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• State vectors: 

• Physically equivalent if they differ by a global phase:

 

• The physically meaningful space of quantum states is the 

projective Hilbert space collapsing each of these rays into a 

point.

I. Entanglement and Quantum Correlations

1) Pure Quantum States: Entanglement and Correlation Patterns
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Infinitesimal squared distance in this projective space

With the Fubini-Study metric

by construction invariant under the gauge transformations

We adapted it to define other projective spaces, considering an alternative equivalence class.

I. Entanglement and Quantum Correlations

1) Pure Quantum States: Entanglement and Correlation Patterns
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States with the exact same statistical properties are local-unitary (LU) equivalent. 

(Rotating the frame does not change the physics!)

Thus, we considered the LU equivalence class:

And we defined the Entanglement Metric:

with

I. Entanglement and Quantum Correlations

1) Pure Quantum States: Entanglement and Correlation Patterns

D. Cocchiarella, S. Scali, S. Ribisi, B. Nardi, G. Bel-Hadj-Aissa, and R.Franzosi, “Entanglement distance for arbitrary M-qudit hybrid systems”,Phys. Rev. A, 2022
A. Vesperini, G. Bel-Hadj-Aissa, L. Capra, and R. Franzosi, “Unveiling the geometric meaning of quantum entanglement”, arXiv:2307.16835, 2023 12



We define the Entanglement Distance (ED) as the minimum of its diagonal elements

Entanglement monotone: does not increase, in average, under Local Operations and 

Classical Communication (LOCC), i.e. the operations that cannot generate 

entanglement.

I. Entanglement and Quantum Correlations

1) Pure Quantum States: Entanglement and Correlation Patterns

D. Cocchiarella, S. Scali, S. Ribisi, B. Nardi, G. Bel-Hadj-Aissa, and R.Franzosi, “Entanglement distance for arbitrary M-qudit hybrid systems”,Phys. Rev. A, 2022
A. Vesperini, G. Bel-Hadj-Aissa, L. Capra, and R. Franzosi, “Unveiling the geometric meaning of quantum entanglement”, arXiv:2307.16835, 2023 13



Maximally entangled in μ and ν

Post-measurement expectation value equates 

pre-measurement correlator:

I. Entanglement and Quantum Correlations

1) Pure Quantum States: Entanglement and Correlation Patterns

Entanglement-breaking:

Projective measurement:

A. Vesperini, “Correlations and projective measurements in maximally entangled multipartite states,” Annals of Physics, 2023 14

Maximum correlation

Operators and projective measures are 

equivalent (have the same effect on s):



I. Entanglement and Quantum Correlations

1) Pure Quantum States: Entanglement and Correlation Patterns

For some states (in particular, most states useful for quantum computation), the Entanglement 
Metric g is block-diagonal, filled with 0 and 1. 

The number n of blocks provides an upper bound to the persistency of entanglement:

A. Vesperini, “Correlations and projective measurements in maximally entangled multipartite states,” Annals of Physics, 2023 15
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E.g. : Briegel-Raussendorf State of 5 qubits

1) Pure Quantum States: Entanglement and Correlation Patterns

A. Vesperini, “Correlations and projective measurements in maximally entangled multipartite states,” Annals of Physics, 2023 16
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I. Entanglement and Quantum Correlations

E.g. : Briegel-Raussendorf State of N=5 qubits

1) Pure Quantum States: Entanglement and Correlation Patterns

A. Vesperini, “Correlations and projective measurements in maximally entangled multipartite states,” Annals of Physics, 2023 21
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I. Entanglement and Quantum Correlations

2) Mixed Quantum States: Entanglement and Quantum Correlations

A density matrix describes a statistics. 
It contains information on the probability of experimental outcomes, not on the underlying 
phenomenon. 

There exists an infinite variety of mixtures realizing the exact same statistics, 
hence an infinite number of realization / decomposition for a given density matrix.

e.g.: 

Density matrices can describe statistical mixtures of quantum states:

A mixed state is 
● entangled if and only if each of its decompositions 

contains entangled sub-states,
● separable otherwise.
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I. Entanglement and Quantum Correlations

2) Mixed Quantum States: Entanglement and Quantum Correlations

The most common way to adapt for mixed states an entanglement monotone defined on 
pure states is by convex roof construction:

But this optimization procedure is practically intractable, as the dimensionality of the space 
to explore scales exponentially with the size of the system.

24



I. Entanglement and Quantum Correlations

Again, using the FS-metric, we obtained a measure 
of quantum correlations for mixed states, the 
Quantum Correlation Distance (QCD):

2) Mixed Quantum States: Entanglement and Quantum Correlations

Separable region

A. Vesperini, G. Bel-Hadj-Aissa, and R. Franzosi, “Entanglement and quantum correlation measures for quantum multipartite mixed states”, Scientific Reports, 2023 25



I. Entanglement and Quantum Correlations

2) Mixed Quantum States: Entanglement and Quantum Correlations

For a classical state, there always exists a (unique) measurement M* leaving the state unchanged:

Quantum correlations: any property breaking this rule.

Pure states: entanglement is the only type of quantum correlation.

Mixed states: there exists another type of quantum correlations.

G. Adesso, T. R. Bromley, and M. Cianciaruso, “Measures and applications of quantum correlations”, Journal of Physics A: Mathematical and Theoretical, 2016 26



I. Entanglement and Quantum Correlations

2) Mixed Quantum States: Entanglement and Quantum Correlations

Density matrices have a richer zoology of quantum 
correlations:

Quantum dissonance:
At variance with classical systems, where 
distinct states are always orthogonals: 
“Measuring X implies non-Y .”

G. Adesso, T. R. Bromley, and M. Cianciaruso, “Measures and applications of quantum correlations”, Journal of Physics A: Mathematical and Theoretical, 2016 27



Ideally, we need a mapping 

Since separable yet quantum correlated states differ from classical states by a local-unitary operation 
on the sub-states of a given decomposition, we devised the regularization procedure:

e.g. :

I. Entanglement and Quantum Correlations

2) Mixed Quantum States: Entanglement and Quantum Correlations

A. Vesperini, G. Bel-Hadj-Aissa, and R. Franzosi, “Entanglement and quantum correlation measures for quantum multipartite mixed states”, Scientific Reports, 2023 28



Ideally, we need a mapping 

Since separable yet quantum correlated states differ from classical states by a local-unitary operation 
on the sub-states of a given decomposition, we devised the regularization procedure:

and the induced regularized entangled distance:

Very similar to the convex roof construction but, at least for some special cases, and choosing the 
appropriate decomposition (not necessarily the separable one), the optimization is much simpler.

I. Entanglement and Quantum Correlations

2) Mixed Quantum States: Entanglement and Quantum Correlations

A. Vesperini, G. Bel-Hadj-Aissa, and R. Franzosi, “Entanglement and quantum correlation measures for quantum multipartite mixed states”, Scientific Reports, 2023 29



I. Entanglement and Quantum Correlations

2) Mixed Quantum States: Entanglement and Quantum Correlations

Application on Bell-diagonal states (mixture of Bell states):

A. Vesperini, G. Bel-Hadj-Aissa, and R. Franzosi, “Entanglement and quantum correlation measures for quantum multipartite mixed states”, Scientific Reports, 2023 30
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2) Mixed Quantum States: Entanglement and Quantum Correlations

Application on Bell-diagonal states (mixture of Bell states):
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I. Entanglement and Quantum Correlations

2) Mixed Quantum States: Entanglement and Quantum Correlations

Application on Bell-diagonal states (mixture of Bell states):

A. Vesperini, G. Bel-Hadj-Aissa, and R. Franzosi, “Entanglement and quantum correlation measures for quantum multipartite mixed states”, Scientific Reports, 2023 33



3) Quantum Phase Transition in 

the Tavis-Cummings Model
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I. Entanglement and Quantum Correlations

A model describing an assembly of two-level atoms in a single-mode electromagnetic cavity:

3) Quantum Phase Transition in the Tavis-Cumming Model

Field Atoms Coupling

Quantum phase transition: structural changes of 
the ground state happen at zero temperature, 
brought by varying the parameter

35



I. Entanglement and Quantum Correlations

3) Quantum Phase Transition in the Tavis-Cumming Model

A. Vesperini, M. Cini, and R. Franzosi, “Entanglement signature of the Superradiant Quantum Phase Transition”, Manuscript in preparation 36



I. Entanglement and Quantum Correlations

3) Quantum Phase Transition in the Tavis-Cumming Model

A. Vesperini, M. Cini, and R. Franzosi, “Entanglement signature of the Superradiant Quantum Phase Transition”, Manuscript in preparation

We used this conserved quantity to 
exploit the block structure of the 
infinite-dimensional Hamiltonian into 
finite sub-eigenspace.
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I. Entanglement and Quantum Correlations

3) Quantum Phase Transition in the Tavis-Cumming Model

As g varies, the ground state (GS) changes of 
sub-space, with an increase of k, thus of:

● the number of photons
● the total spin 
● the degeneracy 

Symmetry breaking at g=1 .

A. Vesperini, M. Cini, and R. Franzosi, “Entanglement signature of the Superradiant Quantum Phase Transition”, Manuscript in preparation

We used this conserved quantity to 
exploit the block structure of the 
infinite-dimensional Hamiltonian into 
finite sub-eigenspace.
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I. Entanglement and Quantum Correlations

3) Quantum Phase Transition in the Tavis-Cumming Model

Discarding the field part of the GS, the remaining
atomic part of the GS is a mixture of Dicke state

where n is the number of excitations.

We found, using the QCD, that 𝝆
s
 is quantum 

correlated  for g>1, with a peak close to g=1. 
It converges to a finite value with increasing M.

A. Vesperini, M. Cini, and R. Franzosi, “Entanglement signature of the Superradiant Quantum Phase Transition”, Manuscript in preparation 39



I. Entanglement and Quantum Correlations

3) Quantum Phase Transition in the Tavis-Cumming Model

A. Vesperini, M. Cini, and R. Franzosi, “Entanglement signature of the Superradiant Quantum Phase Transition”, Manuscript in preparation
N. Yu, “Separability of a mixture of Dicke states”, en, Phys. Rev. A, 2016

We confirmed, using an entanglement criterion 
found in the literature, that the atoms are 
entangled for g≥1. 

But does it hold in the thermodynamic limit?

The Concurrence (entanglement for N=2) vanishes 
for large g.

For larger systems, we thus conjecture that entanglement also vanishes for large g and 
converges to a finite value at g=1. 
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1) The Bicluster: a Metastable 

State in the HMF Model
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II. Metastability and Phase Transitions in Classical Systems



At low energy, a long-lived metastable 
structure is forming: the bicluster.

II. Metastability and Phase Transitions in Classical Systems

1) The Bicluster: a Metastable State in the HMF Model

The Antiferromagnetic Hamiltonian Mean-Field Model:

A. Vesperini, R. Franzosi, S. Ruffo, A. Trombettoni, and X. Leoncini, “Fast collective oscillations and 
clustering phenomena in an antiferromagnetic mean-field model,” Chaos, Solitons & Fractals,2021 43



Mean-field-induced self-consistency of the potential

➔ pseudo order parameter measuring the  degree of 

biclustering

➔ its phase defines the center of mass

➔ its magnitude determines the frequencies (hence the 

overall shape) of m.

 Spectrum:

1) The Bicluster: a Metastable State in the HMF Model

A. Vesperini, R. Franzosi, S. Ruffo, A. Trombettoni, and X. Leoncini, “Fast collective oscillations and 
clustering phenomena in an antiferromagnetic mean-field model,” Chaos, Solitons & Fractals,2021

II. Metastability and Phase Transitions in Classical Systems
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Lissajous-like time-dependent potential,  
“running from its own shadow”

1) The Bicluster: a Metastable State in the HMF Model

II. Metastability and Phase Transitions in Classical Systems
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A. Vesperini, R. Franzosi, S. Ruffo, A. Trombettoni, and X. Leoncini, “Fast collective oscillations and 
clustering phenomena in an antiferromagnetic mean-field model,” Chaos, Solitons & Fractals,2021



Time scale separation:

Leading to an expression for the low frequency:

“Stroboscopic” time-dependent potential force: the ponderomotive effect.

Power spectrum of a single trapped rotator, in a system with 

well-formed biclusters (|m(2)|≈0.5), at low energy (e≈10-5).

1) The Bicluster: a Metastable State in the HMF Model

A. Vesperini, R. Franzosi, S. Ruffo, A. Trombettoni, and X. Leoncini, “Fast collective oscillations and 
clustering phenomena in an antiferromagnetic mean-field model,” Chaos, Solitons & Fractals,2021

II. Metastability and Phase Transitions in Classical Systems
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Overall bimodal dynamic picture 

1) The Bicluster: a Metastable State in the HMF Model

A. Vesperini, R. Franzosi, S. Ruffo, A. Trombettoni, and X. Leoncini, “Fast collective oscillations and 
clustering phenomena in an antiferromagnetic mean-field model,” Chaos, Solitons & Fractals,2021

II. Metastability and Phase Transitions in Classical Systems
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2) The Glass Transition: 

a Topological Point of View
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2) The Glass Transition: a Topological Point of View

The conventional theories of phase transitions lack generality.

Many phase transitions are in fact poorly described by the conventional theories:

● The Yang-Lee theory relies on the thermodynamic limit, thus does not apply to 
transitions in small systems (e.g. protein folding).

● The heuristic theory of Landau fails in the absence of order parameter and symmetry 
breaking (e.g. Kosterlitz–Thouless transition).

M. Pettini, Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics, Springer New York, 2007
M. Gori et al.,  “Topological origin of phase transitions in the absence of critical points of the energy landscape”, J. Stat. Mech., 2018
L. Di Cairano et al., “Topology and Phase Transitions: A First Analytical Step towards the Definition of Sufficient Conditions”, Entropy, 2021

II. Metastability and Phase Transitions in Classical Systems
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An isolated N-body system can be 
represented as a point in a 6N-dimensional 
space, with its dynamics constrained on 
hypersurface of constant E.

M. Pettini, Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics, Springer New York, 2007
M. Gori et al.,  “Topological origin of phase transitions in the absence of critical points of the energy landscape”, J. Stat. Mech., 2018
L. Di Cairano et al., “Topology and Phase Transitions: A First Analytical Step towards the Definition of Sufficient Conditions”, Entropy, 2021

Topological theory of phase transitions:
Phase transitions are accompanied by a 
change of the topology of the potential 
level sets (PLS, i.e. iso-potential 
hypersurfaces). 

2) The Glass Transition: a Topological Point of View

II. Metastability and Phase Transitions in Classical Systems
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Glass transition : from liquid to amorphous solid.
No order parameter nor symmetry breaking, thus Landau theory fails.

Dynamical freezing comes from a large number of deep potential wells in the low energy phase.

It has been shown that, at the transition, the instability index density of the critical points of the 
potential energy vanishes.

Morse theory shows that changes of stability indices are accompanied by changes of topology.

G. Parisi, “Physics of the glass transition“, Physica A, 2000
Grigera et al., “Geometric Approach to the Dynamic Glass Transition”, PRL, 2002

2) The Glass Transition: a Topological Point of View
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Model of glass-former: a frustrated Lennard-Jones binary mixture

Intra-species
Repulsive

Intra-species
Repulsive

Inter-species
Short-range repulsive, 
long-range attractive

D. Coslovich and G. Pastore, “Dynamics and energy landscape in a tetrahedral network glass-former: 
Direct comparison with models of fragile liquids”, J. Phys.: Condens. Matter, 2009

2) The Glass Transition: a Topological Point of View
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Because of the phenomenon of dynamical freezing, glass-formers are notoriously hard to 
simulate: thermodynamic equilibrium is very difficult to achieve.

We used a Microcanonical Monte-Carlo (MC) algorithm, implementing various techniques 
(particle swapping, replica exchange) to speedup the simulation by jumping over the 
potential barriers.

2) The Glass Transition: a Topological Point of View

II. Metastability and Phase Transitions in Classical Systems
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Specific heat computed:

● from fluctuations of kinetic energy (in blue)
● from derivative of T with respect to E (in red)

The agreement of both methods suggest (quasi) 
equilibrium.

Two-step 2nd order transition, with clear divergence 
of high E peak.

2) The Glass Transition: a Topological Point of View

II. Metastability and Phase Transitions in Classical Systems
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M. Pettini, Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics, Springer New York, 2007
Di Cairano, R. Capelli, G. Bel-Hadj-Aissa, and M. Pettini, “Topological origin of the protein folding transition”, Phys. Rev. E, 2022
G. Bel-Hadj-Aissa, M. Gori, R. Franzosi, and M. Pettini, “Geometrical and topological study of the Kosterlitz–Thouless phase transition in the XY model in two  
dimensions”, J. Stat. Mech., 2021

2) The Glass Transition: a Topological Point of View
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We are looking for a signature of topological changes, and thus need relations between 
computable geometric quantities (e.g. mean curvature of the PLS, …) and topological 
invariants.



We are looking for a signature of topological changes, and thus need relations between 
computable geometric quantities (e.g. mean curvature of the PLS, …) and topological 
invariants.

Pinkall’s theorem (abridged): a link between the average dispersion of the principal curvatures, 
and a weighted sum of the Betti numbers b

i  
.

An abrupt change of the LHS corresponds to a change of the RHS, i.e. most likely to a change of  
the Betti numbers, thus of the topology of the PLS.

M. Pettini, Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics, Springer New York, 2007
Di Cairano, R. Capelli, G. Bel-Hadj-Aissa, and M. Pettini, “Topological origin of the protein folding transition”, Phys. Rev. E, 2022
G. Bel-Hadj-Aissa, M. Gori, R. Franzosi, and M. Pettini, “Geometrical and topological study of the Kosterlitz–Thouless phase transition in the XY model in two  
dimensions”, J. Stat. Mech., 2021

2) The Glass Transition: a Topological Point of View
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We are looking for a signature of topological changes, and thus need relations between 
computable geometric quantities (e.g. mean curvature of the PLS, …) and topological 
invariants.

Overholt’s theorem (abridged): yet another link, between the variance of the scalar curvature, 
and the sum of the Betti numbers b

i  
.

Again, an abrupt change of the LHS most likely corresponds to a change of the Betti numbers, 
i.e. a change of the topology of the PLS.

M. Pettini, Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics, Springer New York, 2007
Di Cairano, R. Capelli, G. Bel-Hadj-Aissa, and M. Pettini, “Topological origin of the protein folding transition”, Phys. Rev. E, 2022
G. Bel-Hadj-Aissa, M. Gori, R. Franzosi, and M. Pettini, “Geometrical and topological study of the Kosterlitz–Thouless phase transition in the XY model in two  
dimensions”, J. Stat. Mech., 2021

2) The Glass Transition: a Topological Point of View
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As expected, we found that these quantities exhibit sharp inflexion points in correspondence with the 
peaks of specific heat, indicating a topological change at the transition.

2) The Glass Transition: a Topological Point of View

II. Metastability and Phase Transitions in Classical Systems
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FUTURE PERSPECTIVES

59

To apply the topological theory of phase transitions to a quantum phase 
transition, possibly with a link to entanglement and quantum correlations.

To connect a quantum (or effectively classical) dynamics in the quantum 
state space with the metric properties we exposed here. 



Thank you.

60


