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Physical conditions of the stellar matter

Composition

▶ Stars are made of a mixture of gas plus radiation [1]

Thermodynamics

The thermodynamics properties of the stellar matter are described by the equation of state
(EOS) which uniquely determines:

▶ the fractions of free electrons, neutral and ionized atoms

▶ their ionization states

▶ the thermodynamic quantities such as pressure P, temperature T , density ρ

▶ chemical composition of the gas
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Thermodynamics
▶ From statistical mechanics the free energy of a gas is

F = −KBT ln Ξ with Ξ = partition function (1)

Equilibrium Equations

▶ We get the internal energy per gram E

E = F − T

(
dF

dT

)
ρ,µ

(2)

▶ and the pressure

P = ρ2

(
dF

dρ

)
T ,µ

(3)
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Fully ionized perfect gas

Perfect monoatomic gas

Two conditions defines a perfect gas:

▶ the potential energy of interaction between the gas particles is negligible with respect to
their kinetic energy

Z 2e2

d2
< KBT (4)

▶ de Broglie wavelength associated to the gas particles is much smaller than their mean
separation d

λdB =
h

p
≪ d (5)

where h is the Planck constant and p is the momentum of the particle
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Mean distance of gas particles

1-dimensional

▶ one can think about a line of identically spaced points with distance d

▶ considering a line density of points n, there will be only one particle within length d

nd = 1 (6)

3-dimensional

▶ considering a 3D space density of points n, there will be only one particle within a sphere
of diameter d

4

3
π

(
d

2

)3

n = 1 =⇒ d3 =
6

nπ
=

6µmH

πρ
≈ µmH

ρ
=⇒ d = 3

√
µmH

ρ
(7)
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Mass of gas particles

Mass of gas particles

▶ consider a gas made of particles with average mass

< m >=

∑N
i=1 mi

N
=

ρVol

nVol
=

ρ

n
(8)

▶ the mean molecular weight is the average particle mass normalized to the atomic mass
unit mH

µ =
< m >

mH
=

ρ

nmH
with [µ] = adim (9)

where ρ is the density and n the number per unit volume of the gas particles
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Fully ionized perfect gas

▶ this implies that the momenta p and
kinetic energies Ekin of the various
particle species follow a
Maxwell-Boltzmann distribution

Maxwell-Boltzmann equations

n(p)dp =
√
2πN

(
1

πmKBT

)3/2

p2e
− p2

2mKBT dp (10)

n(Ekin)dEkin = 2πN

(
1

πKBT

)3/2√
Ekine

− Ekin
KBT dEkin (11)

where N denotes the total number of particles in the system and m their mass
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Fully ionized perfect gas

Free energy

▶ Radiation in thermodynamical equilibrium with matter gives free energy

Frad = −4

3

σT 4

cρ
≡ aT 4

3ρ
(12)

where σ is the Stefan-Boltzmann constant and a is the black-body constant

▶ Fully ionized species have no free energy from bound states

Fint = 0 (13)
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Fully ionized perfect gas

Internal energy per unit mass

▶ Using Eq. 2

E =

kinetic︷ ︸︸ ︷
3

2

1

µmH
KBT +

radiation︷︸︸︷
aT 4

ρ
with [E ] =

energy

mass
(14)

Pressure per unit mass

▶ Using Eq. 3

P =
KB

µmH
ρT +

aT 4

3
(15)
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Basic assumptions

The standard theory of stellar evolution is based on the following assumptions: [2]

Stars are spherically symmetric systems made of matter plus radiation

▶ The effects of rotation and magnetic fields are negligible;

The evolution of the physical and chemical quantities describing a star is slow

▶ The temporal evolution of the stellar structure can be described by a sequence of models
in hydrostatic equilibrium;
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Basic assumptions

The matter in each stellar layer is very close to local thermodynamic equilibrium

▶ the average distance travelled by particles between collisions is much smaller than the
dimension of the system

▶ at each point within the star, radiation can be well described by the Planck function
corresponding to the unique temperature in common with the matter

▶ each stellar layer can be assumed to behave like a black body
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Continuity of mass

▶ Stars are spherically symmetric systems

▶ there is only 1 dof, the distance r from the centre

Calculating the continuity of mass equation

The mass contained within a sphere of radius r is

mr =

∫ r

0

4πr ′2ρdr ′ (16)

Differentiating we get the continuity of mass equation

dr

dmr
=

1

4πr2ρ
(17)

where ρ can be considered uniform over the infinitesimal shell element dmr
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Energy transport

Two ways to transport energy

Inside a star energy can be transported either:

▶ by random motions of the constituent particles

▶ by organized large-scale motions of the matter

Three classes of transport mechanisms

Energy transport can be divided:

▶ radiative

▶ conductive

▶ convective
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Hydrostatic equilibrium

Equation of motion for the volume element

The equation of motion of a generic infinitesimal cylindrical volume element with axis along the
radial direction, located between radii r and r + dr is

d2r

dt2
dm = −g(r)dm − dP

dr

dm

ρ
(18)

where

g(r) =
Gmr

r2
(19)

is the inward gravitational acceleration

Davide Serafini Università degli Studi di Siena 17 / 47



Equations of State of the Stellar Matter Equations of Stellar Structure The Hydrogen Burning Phase

Hydrostatic equilibrium

Equation of hydrostatic equlibirum

The condition of hydrostatic equilibrium means that

d2r

dt2
= 0 (20)

hence
dP

dr
= −Gmrρ

r2
(21)

It can be rewritten with mr as independent variable (Eq. 17)

dP

dmr
= −Gmr

4πr4
(22)
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Virial theorem

▶ The virial theorem plays a fundamental role in stellar evolution theory

Assumptions

▶ Consider a bound spherical gas system of mass M in hydrostatic equilibrium which can be
described by Eq. 22

▶ assume that the temperatures are not high enough to start nuclear reactions
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Virial theorem

Calculations

Multiplying both sides of Eq. 22 by 4πr3 and integrating over dm from the centre to the
surface provides ∫ M

0

dP

dm
4πr3dm = −

∫ M

0

Gm

r
dm (23)

An integration by part of the left-hand side of this equation gives

[4πr3p]M0 −
∫ M

0

12πr2
dr

dm
Pdm = −

∫ M

0

Gm

r
dm (24)
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Virial theorem

Calculations

Using the fact that P ≈ 0 at the surface and r = 0 at the centre, and applying Eq. 17 to the
second term on the left-hand side of this equation, we obtain

3

∫ M

0

P

ρ
dm =

∫ M

0

Gm

r
dm (25)

The right-hand side is −Ω where Ω denotes the total gravitational energy of the system. The
left-hand side is related to the thermodynamics of the system.
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Virial theorem

Assumptions

▶ assume a perfect monoatomic gas

Internal energy

Considering Eq. 14 and Eq. 15, the internal energy per unit mass can be expressed as

E =
3

2

P

ρ
(26)

then, the virial theorem can be represented as

E = −Ω

2
(27)
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Virial theorem

Total energy

The total energy Et of the system is

Et = E +Ω =⇒ Et = −E =
Ω

2
(28)

Features of the described system

▶ the total energy is negative

▶ in agreement with the hypothesis that the system is bound
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Virial theorem

Perturbation of hydrostatic equilibrium state

▶ Suppose a star with no active nuclear reactions

▶ Stellar surfaces are hotter than interstellar space

▶ Energy is radiated away (lost) from the surface

Hence the total energy Et decreases according to

L = −dEt

dt
= −1

2

dΩ

dt
(29)
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Virial theorem

Gravitational contraction

▶ luminosity L must be positive

▶ so the star has to contract (dΩ < 0)

Star heating

▶ internal energy has to increase correspondingly (Eq. 28)

∆E = −∆Et = −∆Ω

2
(30)

▶ So does the star temperature since T ∝ E (Eq. 14)
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Virial theorem

Constraints on the average internal temperature of a star

▶ Suppose a star of mass M and radius R

▶ The gravitational energy is

Ω = −α
GM2

R
with α(density profile) ∼ 1

!
=

3

5
(31)

▶ The internal energy for a monoatomic and fully ionized gas is

E ∼ 3

2
KT̄

M

µmH
(32)

where T̄ is the mean temperature within the star

Davide Serafini Università degli Studi di Siena 26 / 47



Equations of State of the Stellar Matter Equations of Stellar Structure The Hydrogen Burning Phase

Virial theorem

Constraints on the average internal temperature of a star

▶ Using Eq. 28 and an average density ρ̄ ∝ M/R3 one finds

T̄ ∝ M2/3ρ̄1/3 (33)

Features of the average internal temperature

▶ to achieve the same mean temperature T̄ , less massive objects have to be denser
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Virial theorem

Stability criterion for a star

▶ Consider a generic perfect gas

▶ the internal energy is

E =
1

γ − 1

P

ρ
with γ ≡ cP

cv

monoatomic−−−−−−−→ 5

3
(34)

▶ Substituting in Eq. 25 we get a more general expression for the virial theorem

E = − Ω

3(γ − 1)
(35)
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Virial theorem

Stability criterion for a star

▶ Correspondingly the total energy is

Et =
3γ − 4

3(γ − 1)

<0︷︸︸︷
Ω (36)

▶ a star will be in hydrostatic equilibrium (Et < 0) only as long as

γ >
4

3
(37)

Davide Serafini Università degli Studi di Siena 29 / 47



Equations of State of the Stellar Matter Equations of Stellar Structure The Hydrogen Burning Phase

Virial theorem

Non vanishing pressure at the surface

▶ Suppose pressure P0 > 0 at the surface of the gas system

▶ the virial theorem becomes
3(γ − 1)E +Ω = 4πR3P0 (38)
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Overview

Regarding the H-burning phase

▶ it is the longest evolutionary phase

▶ the structural and evolutionary properties of a star during the central and shell H-burning
phases determine its evolutionary properties through all successive phases

▶ its termination is related to the most important astrophysical clock

▶ the final portion of the shell H-burning phase in low-mass, metal-poor stars provides an
accurate distance indicator for old stellar populations

▶ offers an opportunity for deriving the Inital Mass Function (IMF) of stellar systems

We define a star as being on the Main Sequence if its evolutionary rate is controlled by the
timescale of the H-burning process occurring in the core
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The nuclear reactions

H-burning mechanism

▶ The H-burning mechanism is essentially the nuclear fusion of four protons into one He-4
nucleus

▶ the nuclear conversion of H into He is very efficient

▶ the fusion of H nuclei can be achieved through two reactions chains, namely the p-p chain

and the CNO cycle
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The central H-burning phase in lower main sequence (LMS) stars

▶ In low-mass stars (M ≤ 1.3M⊙) the main H-burning mechanism is the p-p chain

▶ In general, the star regulates its thermonuclear burning rate so that the nuclear energy
production is just enough to enforce the hydrostatic equilibrium condition

▶ If the number of nuclear reactions is larger than needed, the star reacts by expanding,
thus decreasing the temperature and density, so that the burning rate decreases and
equilibrium is re-established
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The central H-burning phase in upper main sequence (UMS) stars

▶ the main effect of an increase in the stellar mass is a significant increase in the interior
temperature

▶ the most important effect of this temperature increase is that the CNO cycle becomes the
dominant energy production mechanism
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The Schönberg–Chandrasekhar limit

Chandrasekhar Schönberg

▶ In 1942, Schönberg and Chandrasekhar investigated, with a pure analytical approach, the
hydrostatic equilibrium conditions for an isothermal He core with an ideal gas EOS

▶ They found a fixed limiting value for the ratio between the core mass and the total stellar
mass: Mcore/Mtot

▶ Beyond the Schönberg–Chandrasekhar limit, the core must contract on Kelvin-Helmholtz
timescales due to the envelope pressure
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The Schönberg–Chandrasekhar limit

Assumptions

▶ at the exhaustion of central H the star is left with an He core surrounded by an H rich
envelope [3]

▶ Suppose no nuclear burning inside the He core

▶ Suppose the temperature gradient is radiative

▶ Suppose its thermal stratification is isothermal

Then Eq. 75 can be used
dT

dmr
= − 3k

64π2ac

Lr
r4T 3
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The Schönberg–Chandrasekhar limit

Equation

▶ Consider an isothermal core of radius Rc and mass Mcore

▶ Suppose a non-vanishing pressure P0 at the surface of the core

▶ apply the virial theorem represented by Eq. 38

▶ Substitute for the internal energy and the gravitational energy respectively

E = K1McoreTc and Ω = −K2
M2

core

Rc
(39)

with K1,2 constants. In these terms, the virial theorem becomes

K1McoreTc − K2
M2

core

Rc
= P0R

3
c (40)
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The Schönberg–Chandrasekhar limit

Solution

▶ solving for P0

P0 = K1
McoreTc

R3
c

− K2
M2

core

R4
c

(41)

▶ the first term in the right-hand side comes from the total internal energy of the core

▶ the second term comes from the gravitational potential Ω

Maximum

▶ We look for the core radius at which the surface pressure is on a maximum

dP0

dRc

!
= 0 (42)
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The Schönberg–Chandrasekhar limit

Maximum

▶ We find that the surface pressure is maximum for

Rc = K4
Mcore

Tc
(43)

▶ At this core radius, the surface pressure is

P0,m = K3
T 4
c

M2
core

(44)

▶ the maximum pressure decreases for increasing Mcore
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The Schönberg–Chandrasekhar limit

Equilibrium

▶ For the star to be in equilibrium it is necessary to have

P0,m ≥ Pe (45)

where Pe is the pressure exerted by the non-degenerate envelope on the interface with the
core
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The Schönberg–Chandrasekhar limit

Envelope pressure at the interface

▶ apply the dimensional analysis to Eq. 22 and consider ρ ∝ M/R3

▶ assume that the functional dependencies found for the central values also hold for any
other point within the star

▶ we can approximate

Pe ∝
M2

tot

R4
and Tc ∝ Mtot

R
(46)

where Mtot is the total mass of the star and R its radius

▶ hence the pressure exerted by the envelope is

Pe ∝
T 4
c

M2
tot

(47)
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The Schönberg–Chandrasekhar limit

Upper limit to the mass ratio

At the interface

▶ core pressure is P0,m ∝ M−2
core

▶ envelope pressure is Pe ∝ M−2
tot

▶ therefore the condition P0,m ≥ Pe becomes somewhat

Mcore ≤ factor ·Mtot (48)

▶ there exist an upper limit to the ratio Mcore/Mtot

▶ beyond the Schönberg–Chandrasekhar limit the core must contract
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The Schönberg–Chandrasekhar limit

Upper limit to the mass ratio

▶ the exact value of the mass ratio upper limit is(
Mcore

Mtot

)
SC

= 0.37

(
µenv

µcore

)2

(49)

▶ Suppose a solar chemical composition with µenv ∼ 0.6 and µcore ∼ 1.3

▶ At the end of the MS phase the Schönberg–Chandrasekhar limit will be ∼ 0.08

▶ if the He core mass is larger than 10 per cent of the total mass, it must contract
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Intermediate-mass and massive stars
▶ Mcore > S-C limit

▶ core contracts and envelope expands

▶ In the HRD the star moves from blue to red at almost constant luminosity (Sub-Giant
Branch)

▶ Evolutionary rate is the Kelvin-Helmholtz timescale

▶ the envelope expands at constant effective temperature increasing luminosity (Red Giant
Branch)

High-intermediate mass

▶ no electron degeneracy at the core

▶ core reaches T ≈ 108K =⇒ He-burning

▶ higher total mass =⇒ shorter lifetime
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Low-mass stars

▶ Mcore < S-C limit

▶ electron gas in the He core becomes electron degenerate

▶ electron degeneracy of the He core pushes the envelope even beyond
Schönberg–Chandrasekhar limit
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Thank you for the attention
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Nuclear time scale

▶ lifetime of a star based solely on its rate of fuel consumption via H-burning,
(4mH −mHe)/mH ∼ 0.007

▶ In reality, the lifespan of a star is greater than what is estimated by the nuclear time scale
because as one fuel becomes scarce, another will generally take its place

▶ However, all the phases after hydrogen burning combined typically add up to less than
10% of the duration of hydrogen burning

▶ the nuclear time scale is

τn =
En

L
F (50)

where En is the nuclear energy reservoir, L is the luminosity and F the fraction of reservoir
available

▶ assume that the sun is made of pure H and only the central 10 per cent of its mass is hot
enough to undergo nuclear reactions, then τn ≈ 1× 1010 y
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Kelvin–Helmholtz time scale

▶ time it takes for a star to radiate away its total kinetic energy content at its current
luminosity rate

τKH ≈ E

L
(51)

▶ Using virial theorem the internal energy is about half the opposite of the gravitational
energy, so

τ =
GM2

DL
(52)

where M and D are total mass and diameter of the star respectively

▶ for the sun τKH ∼ 2× 107 y
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Free-fall time scale

▶ time for the star collapse when the gravitational force is not balanced by the pressure

▶ consider the hydrostatic equation (Eq. 18) without the pressure gradient

d2r

dt2
dm = −G

mr

r2
dm (53)

▶ Substitute the characteristic quantities for each dimension

R

τ 2ff
= G

M

R2
=⇒ τff ∼ R3/2

(GM)1/2
∼

√
1

G ρ̄
(54)

▶ for the sun ρ̄⊙ ∼ 1.4 g/cc and τff,⊙ ∼ 30min
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Time scales

Time scales comparison

In general
τn ≫ τKH ≫ τff (55)
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Hertzsprung-Russell diagram
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Electron degeneracy

▶ the interparticle distance is comparable to the de Broglie wavelength

▶ temperature low enough at a given density

▶ Maxwell distribution model is not valid anymore

▶ Fermi-Dirac distribution must be used

n(p)dp =
8πp2

h3

(
1

1 + e−η+Ekin/KBT

)
dp (56)

▶ in the case of electron degeneracy the electron pressure does not depend on the
temperature

P = 1.0036× 1013
(

ρ

µe

)5/3

(57)
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The asymptotic giant branch (AGB)

▶ The abundance of He becomes low
enough

▶ the stellar tracks move on the
Hertzsprung–Russell diagram (HRD)
towards a lower effective temperature and
larger luminosity

▶ It corresponds to the He-shell burning phase

▶ In low-mass AGB stars the effective temperature-luminosity relationship is very similar to
that of low-mass RGB stars
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Conservation of energy

Equation of energy conservation

If some energy is produced in a spherical shell of thickness dr , located at distance r from the
centre of the star, the local luminosity is equal to

dLr = 4πr2ρdrϵ (58)

where ϵ denotes the coefficient of energy generation per unit time and unit mass. Then the
equation of energy conservation is

dLr
dr

= 4πr2ρϵ (59)

It can be expressed in term of mr as
dLr
dmr

= ϵ (60)
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Radiative transport I

Assumptions

▶ Consider a net flux of photons crossing a volume element of unit area and depth dr
located at distance r from the centre of the star

▶ While crossing some photons will be extracted from the net outgoing flux due to
interactions with neighbouring particles

▶ these photons will be redistributed isotropically

▶ assume the properties of these photons do not change along their mean free path

Davide Serafini Università degli Studi di Siena 13 / 27



References Back-up

Radiative transport II
Transferred momentum

The momentum dp transferred from the photons to the volume element is equal to

dp =
dFrad

c
=

Frad

c

dr

l
(61)

where Frad is the flux of energy of the outgoing photons and l is the photon mean free path.
On the other hand dp is also equal to the opposite of the change dPrad of the pressure exerted
by the photons over the length dr

dp = −dPrad (62)

Therefore

dPrad = −Frad

c

dr

l
(63)
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Radiative transport III
Interaction probability

We introduce the opacity coefficient krad as

kradρ =
1

l
(64)

which is a measure of the probability that the photons experience one interaction per unit
length. Hence

dPrad

dr
= −kradρ

c
Frad (65)
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Radiative transport IV

Total energy flux

The black body assumption provides in Eq. 15

Prad = a
T 4

3
with derivative

dPrad

dr
=

4

3
aT 3 dT

dr
(66)

We can rewrite Eq. 65 and obtain the equation of radiative transport in stellar interiors, when
energy is carried by photons

dT

dr
= −3kradρ

4acT 3
Frad (67)

If the total energy flux is carried by photons then we can express the flux of energy Frad using
the luminosity Lr = Frad4πr

2

dT

dr
=

3kradρ

4acT 3

Lr
4πr2

(68)
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Conductive transport I

Energy transport due to free non-degenerate electrons

▶ the energy is transported by the constituents of the stellar matter other than the photons,
i.e. free non-degenerate electrons

The energy flux is given approximately by

Fe ∼ −Neνl
dE

dr
(69)

where Ne is the number of electrons per unit volume, ν their average velocity, l the mean free
path and E their average kinetic energy. Since E ∝ KBT ,

Fe ∼ −KBNeνl
dT

dr
(70)
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Conductive transport II

Analogy with radiative transport

Note that Eq. 70 has the same form as Eq. 67. Analogously, we introduce the electron
opacity ke

dT

dr
∼ − Fe

KBNeνl
(71)

Features of conductive transport

▶ electron transport is very inefficient with respect to radiation

▶ ions are outnumbered by electrons

▶ ion transport is even more inefficient

▶ degenerate electrons transport energy much more efficiently
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Conductive transport III

Radiative plus conductive transport

Therefore the total energy flux will be

F = Frad + Fe (72)

The equation of the radiative plus conductive energy transport for the stellar interiors becomes

dT

dr
= − 3kρ

4acT 3

Lr
4πr2

(73)

where k is the total opacity of the stellar matter given by

1

k
=

1

krad
+

1

ke
(74)

If electron conduction is effective, ke ≪ krad and therefore k ∼ ke .
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Conductive transport IV

Radiative plus conductive transport

We can rewrite the equation for the radiative plus energy transport in terms of mr as

dT

dmr
= − 3k

64π2ac

Lr
r4T 3

(75)

The only mechanism of chemical element transport within stars is convection

▶ the effect of rotational mixing and atomic diffusion is negligible
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Overall picture of stellar evolution

▶ the higher the mass the shorter the lifetime

↑ M =⇒ ↓ τlife (76)

▶ the lower the mass the higher the central density and the lower the central temperature

↓ M =⇒ ↑ ρc ↓ Tc (77)

▶ the higher the metallicity the lower the luminosity and the Teff

▶ the higher the initial He content the higher the luminosity and the Teff and the shorter
the evolutionary time scale
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The p-p chain
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The CNO cycle
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The dependence of the MS tracks on chemical composition and
convection efficiency

How stellar evolution models depend on the adopted inputs:

▶ the inital abundance of helium affects the MS evolution through the changes induced in
the radiative opacity and the mean molecular weight

▶ a change in metallicity affects the radiative opacity much more than the nuclear energy
generation

▶ the efficiency of convection
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The mass-luminosity relation

▶ Stellar evolution models predict that stars spend a sizeable fraction of their core
H-burning evolutionary lifetime close to their ZAMS location

▶ Stars on or near the ZAMS display a tight relationship between their total mass and the
surface luminosity
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Overall picture of stellar evolution

▶ the higher the mass the shorter the lifetime

↑ M =⇒ ↓ τlife (78)

▶ the lower the mass the higher the central density and the lower the central temperature

↓ M =⇒ ↑ ρc ↓ Tc (79)

The stellar mass has a pivotal role in stellar evolution
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Very low-mass stars

▶ the evolutionary and structural properties of low-mass stars change significantly when
entering into the realm of very low-mass (VLM) stars

▶ stars below 0.3M⊙ are fully convective all along their MS lifetime
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