

Study, Development and Optimization of Laser Resonant Photo-Ionization processes applied to species of interest for the Isolpharm-SPES project

> Omorjit Singh Khwairakpam PhD candidate, 36th cycle Experimental Physics, DSFTA, UNISI

> > Supervisor: Prof. Emilio Mariotti Co-supervisor: Ing. Danielen Scarpa

O.S. (Omi) Khwairakpam

S.JORNARYS **DECXXXX**

SPES @ INFN-LNL

The ISOLPHARM method

Nuclide production can be extremely flexible

03/06/2022

O.S. (Omi) Khwairakpam

The SPES Ion Sources

23/10/2023

SPES Front-End and Laser Ion Source

✓ **PPB** stands for Primary Proton beam

- **✓ Production target** is a set of UC_x discs
✓ RIB stands for Radioactive Ion Beam
- **RIB** stands for Radioactive Ion Beam

Laser Photo-ionization: Introduction

Flame test:

- ➢ Different elements "respond" with different colors
- \triangleright The color depends on internal electrons energy level structure

What separates the Laser Ion Source from Surface and Plasma Ion Source?

- ✓ Surface and plasma ion sources looks essentially at the **ionization threshold** as one unit/limit that needs to be crossed at one step.
- ✓ Laser ion source breaks down this process **into several steps** combined. Each step is unique to the electronic configuration of the element considered.
- ✓ And so called the "**Resonant Ionization Laser Ion Source (RILIS)**".

Advantages of a laser ion source

- ✓ Element selectivity
- \checkmark Reduced isobaric contamination
- \checkmark Beam diagnostics (switch the laser on and off)
- \checkmark High efficiency (tens of percent)
- \checkmark The ionization region is well-defined

Production of Isotopic beam with RILIS technique

Offline lab: Spectroscopy

• 2 Dye Lasers @ 10 Hz rep. rate

Online lab: RIB prod. • 3 TiSa Laser @ 10 kHz rep. rate

Methods of study in the offline laser lab

1. Using Hollow Cathode Lamp (HCL)

• Analysis of the Opto-galvanic effect (OGE)

2. Using ToF-MS

- Ablation source of atoms
- MCP detectors

First topic: Photo-Ionization of silver

 $131C_S$

 $132C_6$

136_{Cs}

 111 Ag)

¹¹¹Ag properties

- ✓ *β***-** emitter(average energy 360 keV)
- \checkmark Medium half-life (7.45 days)
- ✓ Medium tissue penetration (**1.8 mm**)
- ✓ Low energy *γ* rays SPECT

We need to verify existing photo-ionization schemes of silver and/or, find new ones.

Scheme development for the photo-ionization of silver

 $\frac{5}{2}$]4d¹⁰8d

 $2(54,203.12 \text{ cm}^{-1})$

 $J = 5/2$ 4d¹⁰6d

Experimental Set-up Scheme and Set-up Scheme and Scheme and Scheme and Scheme and Scheme $\frac{\text{cm}^{-1}}{61106.45(\text{Ag II})}$ **Ionization Threshold** 60000 **WAVE-** $4d^{10}9s$ 4d¹⁰7d $\left[\frac{J=5/2}{J=3/2}\right]$ **METER** $4d^{10}8s$ 55000 $4d^{10}7s$ 328.16 50000 $4d^{10}5d\left[\frac{J}{12}\right]$ **ABLATION PUMP** DYE₁ Prism s 45000 Y 421.402 nm N 40000 C 421.402 **TOF-MS** DYE₂ 35000 $J = 3/2$ $(30, 472.66$ cm⁻¹) 30000 $J = 1/2$ **WAVE-HCL** 25000 **METER** 20000 328.163 nm Laser Parameters 15000 Power Pulse Fundamental **SHG** 10000 Laser * The third jump, indicated by , can be $\Delta\lambda$ λ $\Delta\lambda$ length $\Delta \nu$ λ $\Delta \nu$ 5000 achieved by one of the previous wavelengths (GHz) (GHz) (μW) (pm) (nm) (pm) (n_s) (nm) or a dedicated non-resonant laser wavelength $4d^{10}$ 5s Ω TDL50 656.326 $3 - 3.5$ $2.1 - 2.4$ 328.163 $1.1 - 1.2$ 3.0-3.3 20-30 20 $4d^{10}$ ns $4d^{10}5p$ $4d^{10}$ nd $(Term = ²S ; J=1/2)$ $(Term = ²P_o)$ $(Term = ²D)$ FL2002 421.402 $1 - 1.1$ $1.7 - 1.9$ 500-550 20 $\overline{}$

O.S. (Omi) Khwairakpam 23/10/2023 17

PESN^N Hollow Cathode Lamps (HCLs): Opto-Galvanic Signals

SLOW Opto-Galvanic Signal:

- ✓ The absorption of laser radiation in the discharge results in a **change in the steady-state population** of bound atomic or molecular levels.
- \checkmark Since different levels have different ionization cross-sections, a perturbation to the steady-state situation results in **a net change in the discharge current or equivalently a change in the discharge impedance**.
- \checkmark The electric signal detected is the slow signal, negative and lasting µs.

FAST Opto-Galvanic Signal:

- ✓ It is **a direct ionization process** during laser pulse. The laser radiation brings the selectively excited atoms directly to ionization.
- Electrons are immediately available as carriers.
- ✓ This effect produces a fast-electric signal. It was found that **this fastsignal followsthe laser pulse temporal behavior**(ns) [2].

[2] M.Broglia, F.Catoni, P.Zampetti: "Temporal behaviour of the optogalvanic signal in a hollow cathode lamp", Journal de Physique, Colloque C7, supplement au n˚ 11, Tome 44, novembre 1983

Silver HCL: Scheme test with Slow OGE signals

- ✓ Cathode element: Silver
- \checkmark Buffer gas: Argon
- \checkmark Maximum current: 4 mA
- \checkmark Primary emission line: 328.163 nm

Second step

 \overline{C}

Silver HCL: Rydberg states with Fast OGE signals

- \checkmark Fast signals are observed only when there is direct ionization.
- \checkmark Only 328.163 nm is injected into the HCL.
- \checkmark Two photons of 328.163 nm would only take the electrons to roughly 60945.32 cm⁻¹, not beyond the ionization potential 61106.45 cm⁻¹.

Wavelength scan Ag line; HCL fast signal [Second step = 0 nm] Original Data Background Voigt-Fit

Shows the presence of highlying Rydberg states around the energy value of 60945.32 cm^{-1} .

S.JORNARYS **DECXXXX**

Home-made ToF (using ablation source)

- 1. Ionization chamber $(10^{-7}$ mbar)
- 2. Excitation laser(s) entrance window
- 3. Ablation laser (1064 nm) entrance window
- 4. Ion flight tube (1.90 meters)
- 5. Micro Channel Plate (MCP) detector

Home-made ToF (using ablation source)

Top view

- 1) Ablation (1064 nm, 10 Hz, 20 ns, 2J) 2) Plume Expansion (roughly 30-35 µs) 3) Photoionization 4) Ion creation and flight (26-27 µs)
- 5) Collection

Front view (as seen by the ionization laser)

O.S. (Omi) Khwairakpam

Time of Flight measurements

- 1. Photo-ionization scheme of silver: 328.163 + 421.402 nm
	- \checkmark Synchronize the laser pulses in time
	- \checkmark Overlap in space
	- \checkmark Frequency scan of one at a time
- 2. Fine structure of the silver level: $4d^{10}6d^{2}D$ (J=5/2 and J=3/2)
	- \checkmark A large frequency scan of roughly 560 GHz in the second step
- 3. Doppler suppressed spectroscopy in the hot ablation plume
	- \checkmark Reducing the atom-laser interaction volume
	- \checkmark Probe different velocity components for the different excitation laser

Ion optics and applied voltages

A SIMION simulation with the applied electrode voltages and the desired ion (isotope) gives the approximated time of flight for the species to arrive to the detector after the flight, immediately after it is formed.

Scheme test and Fine structure

23/10/2023 O.S. (Omi) Khwairakpam 25

RSITAT

DECXXXX

SPES Next Topic: New TOF-MS in the SPES online laser lab

Assembled TOF- MS

Sectioned Top View: TOF- MS

23/10/2023 O.S. (Omi) Khwairakpam 30

Sectioned Side View: TOF- MS

23/10/2023 O.S. (Omi) Khwairakpam 31

Completely dismountable ion optic system

SPES NLaser Screen: To visualize overlap of laser beams

Laser-Atom Interaction (Geometry to suppress Doppler broadening)

>> Should allow Doppler suppressed laser spectroscopy

WCCXXX+

Next topic: SPES Laser Ion Source

The SPES laser ion source is essentially a hot cavity laser ion source.

- \checkmark Optimized thermal profile.
- \checkmark The principle is to introduce tunable laser beams into the hot cavity.

M. Manzolaro et al. http://dx.doi.org/10.1063/1.4998246

- \checkmark Maximum interaction of the lasers with the atoms, spatially and temporally.
- ✓ **Laser-atom interaction** is the key. We would like that there are more atoms than ions for the particular element.
- ✓ In other words, it is essential that **the surface ionization** of this element in the hot cavity is **low.**
- ✓ Also, **minimal high temperature** needs to be maintained to avoid "sitting" of the neutrals on the walls of the ion source.
- ✓ This temperature is required to maintain **good confinement** of the laser ions inside the hot cavity.

Q. What happens if we lose all the ions we produce via collision with the wall?

✓ A **thermal plasma** is formed inside the hot cavity. This plasma has **negative potential (in terms of a few volts)** respect to the wall of the cavity, and which **confinesthe ions inside the volume**. This potential is :

"Far more advantageous is **the increase of neutral density** though quite high densities are required. The **efficiency can be increased** by a factor of approximately 5 if the mean free part of ions is reduced to the order of the cavity dimensions."

R. Kirchner et al. [https://doi.org/10.1016/0168-9002\(90\)90377-I](https://doi.org/10.1016/0168-9002(90)90377-I)

Experimental Set-Up at ISOLDE Offline 2, CERN

Ionization Efficiency of Gallium

How is the measurement performed?

- \checkmark We take a precise sample of gallium and heat it up to release the neutrals.
- \checkmark We collect the gallium ions produced.

 \checkmark Efficiency = Number of collected ions Number of injected neutals

What is Laser Enhancement Ratio?

- \checkmark In a hot cavity, the production of surface ions is inevitable.
- \checkmark We need to understand the selectivity of the laser ion source.

Laser Enhancement Ratio, LER = $\frac{Ion current with Laser ON}{Ion current with Learn OFF}$ Ion current with Laser OFF

- ✓ Basically, gives us the comparison between the laser ions and the surface ions in the hot cavity.
- \checkmark Currents in the range of pA.

SPES W LER against the non-resonant laser power (532 nm) 60 Continuum

Observance of **false** saturation: Why?

- \checkmark Deposition on the laser entrance window from the previous failures of the mass separation magnet.
- \checkmark Thermal lensing effect is caused when these deposits absorb high laser power.

✓ Time structure is a **single ion counting** method of measurement.

- ✓ The ion count is performed inside a time window **synchronized with the laser pulses @5 kHz** (200 μs in time)
- ✓ Basically, putting **a time-stamp on each ion** arriving at the magnetof detector with reference to the pulses of the laser and making **a histogram over thousands of laser shots**.
- ✓ Measurement performed with the **range of fA** isotope current on the detector.
- \checkmark It provides information regarding the ion source environment.

SPES Measured Time structures at different temperatures. of the Ion Source $\frac{20}{1}$ Ω IS Current= 360 A, Temp = 2200° C IS Current= 325 A, Temp = 2050° C IS Current= 300 A, Temp = 1940° C IS Current= 275 A, Temp = 1800° C _aser Ion Counts (a.u.) $\mathbf 0$ Time since laser trigger (μs)

23/10/2023 O.S. (Omi) Khwairakpam 45

Laser Ion Counts (a.u.)

