Micro Channel Plates And an application: LAPPD

High Energy Seminar Ph.D. cycle XXXVII

Matteo Feltre 26/10/23

1. Introduction to Photon Detection

2. Micro Channel Plates

3. Large Area Picosecond Photo Detectors

4. High Energy Application of LAPPDs

Photon Detection

Light detection has been developed using multiple techniques

Operating principle:

- **1. Photon Absorption:** production of a photo-electron or a electron-hole pair
- 2. Signal Amplification: secondary emission
- 3. Collection of amplified signal

Characteristics:

Vacuum Detectors: Photo Multipliers Tubes

Photo-Multiplier Tubes have been developed since the '30s and are widely used in many fields of Physics

Vacuum Detectors: Multi Channel Plates

Devices with continuous amplification channels made of resistive materials

PMT - Multi Channel Plates: Operating Principle

After an electron hits a wall on a channel, secondary electrons are freed

Radial emission energy depends on the axial energy of bombarding electrons

 V_{Z}

$$V_{or} = \frac{V_z}{4\beta^2}$$
 for $\sqrt{V_{or}V_{oz}} \ll$

The axial distance travelled Is:

$$\bar{z} \sim \frac{4ED^2}{\overline{V_{or}}}$$

The total number of steps is given by: $L \quad L \quad 1 \quad \alpha$

$$\frac{\alpha}{\beta}$$
 $\mathbf{n} \propto \alpha =$

Proportionality Hypothesis

 $z \sim \frac{1}{2} \left(\frac{V_z}{V_{or}} \right)^{\frac{1}{2}} D = \beta D$

The final gain can be expressed as:

$$G = \left(\frac{KV_0^2}{4V\alpha^2}\right)^{\frac{4V\alpha^2}{V_0}}$$

In which:

- V_0 is the energy gained by an electron traversing the channel
- *V* is the initial energy of a secondary electron
- V_0 is the energy gained by an electron traversing the channel

But the **experimental curve behaves differently** due to:

- 1. Ion feedback
- 2. Secondary electrons are not emitted orthogonally

High Gain Micro Channel Plates

In a straight type MCP a gain of just $G \sim 10^3 - 10^4$ can be achieved without significant ion feedback This is not enough for electronics readout systems!

Three types of high-gain MCP configurations are in use:

Chevron MCP Stack

Two layers of straight MCP with a bias angle of about $8^{\circ} - 10^{\circ}$ lons are trapped in the area of the junction

High Gain Micro Channel Plates

In a straight type MCP a gain of just $G \sim 10^3 - 10^4$ can be achieved without significant ion feedback This is not enough for electronics readout systems!

Three types of high-gain MCP configurations are in use:

Chevron MCP Stack Two layers of straight MCP with a bias angle of about $8^{\circ} - 10^{\circ}$ lons are trapped in the area of the junction

Z-plate MCP Stack

Three layers of straight MCP with matching resistances are mounted

lons are trapped in the two interfaces

High Gain Micro Channel Plates

In a straight type MCP a gain of just $G \sim 10^3 - 10^4$ can be achieved without significant ion feedback This is not enough for electronics readout systems!

Three types of high-gain MCP configurations are in use:

Chevron MCP Stack Two layers of straight MCP with a bias angle of about $8^{\circ} - 10^{\circ}$ lons are trapped in the area of the junction

Z-plate MCP Stack

Three layers of straight MCP with matching resistances are mounted

Rel. resolution

At Gain...

lons are trapped in the two interfaces

Curved-channel C-Plate MCP

Most stable Least amount of ion feedback Least spreading of output electron cloud

Very difficult to manufacture

	Chevron	Z-plate	Curved C-Plate
%	60 – 120	35 – 60	35 – 50
	10 ⁷	10 ⁸	10 ⁶

6

Applications for MCP

Traditional MCP Manufacturing Technique

- Lead glass tubes are filled with glass rods
- The tube collapses around the rod to obtain a lead glass
 cladding and an inner core glass
- Fibers are stacked in parallel and stretched together
- Fibers assemblies are fused
- Wafer is cut nearly perpendicular to fibers axis
- Core glass is etched away leaving an array of pores
- Reduction in Hydrogen

Aging

Reduction in gain and a slow decline over lifetime
 Why?

Investigation of surface:

• In the traditional technique, the surface of pores is rich of alkaline metals

After exposure to 500 eV electrons, content of Potassium and Rubidium were reduced

• Potassium is a source of background due to natural radioactivity

Applications for MCP

Recent progesses (2010s) have been made to improve MCP gain and performances by: <u>Functionalizing conventional non-activated MCPs with thin films</u>

Schematic of ALD MCP

How to develop large area and economical MCPs? Convergence of two innovations:

- Production of large blocks of micro-capillary arrays: Hollow borosilicate capillaries
- Atomic Layer Deposition (ALD)
- ✓ Elimination on any upper limit on L/d
- \checkmark Open area ratio up to 74%
- ✓ Borosilicate glass: low radioactivity
- ✓ Larger Resistivity: Lower Operational Voltage

An example: Large-Area Picosecond PhotoDetector (LAPPD)

The idea of the project is to develop a large-area photodetector with:

- Time resolution of the order of picoseconds
- Spatial resolution in sub-millimeter region

Why?

- <u>Extract all measurable information (4-vector)</u> from particle collisions
- (Cost savings respect to cover large areas)

Applications

- High Energy Physics
- Nuclear Physics
- Medical Imaging

As an example LAPPD are considered as an option in ElectroMagnetic Calorimeter of LHCb Upgrade 2:

- Detection of EM showers by ionization inside MCP wafers
- Excellent timing resolution for avoiding pile-up

20cm x 20cm LAPPD square

LAPPD Overview

- 20cm x 20cm MCP-PMT • Chevron pair of MCPs (10-20µm)
- About 370 cm² effective area ($\sim 74\%$) • High Gain ($\sim 10^7$)
- **Time Resolution** Single Photo-Electron: $\sim 50 \text{ ps}$ 150 GeV induced EM shower: $\sim 8 \text{ ps}$
- **Position Resolution** ٠ 0(mm)

•

Magnetic Field Tolerance . ~ 1.4 T

LAPPD Performances

0.40

0.35

0.30

0.25

0.15

0.10

0.05

0.00

100

Щ 0.20

Performances of LAPPD depends on the operating regime of its components:

- **Photocathode Voltage**
- **MCP Voltage**

Change in **Quantum**

Efficiency over .

wavelength

Due to large area, a typical **problem** is the **uniformity of overall response** of many channels

LAPPD Overview

Two generations of LAPPD:

Generation I

Direct read-out with strip-line anode with ~1 mm spatial resolution

t_1^{\wedge} $\Delta t \rightarrow Position$ Centroid of → Position adjacent strips t2 incoming photon top window More suitable for high occupancy environment photocathode (pc) pc gap mcp 1 inter-mcp gap mcp 2 anode gap anode readout All inexpensive glass

Generation II ٠

Resistive interior anode with capacitively coupled external anode PCB with customizable pixel pattern

12

LAPPD properties characterization

A comparison between generation I and II of LAPPDs has been made

Resolution for a **single photo-electron** response

Expected results in a **realistic environment** similar to LHCb ECal

Application to LHCb EM Calorimeter Upgrade

Addition of LAPPD based photo-detectors will introduce a timing component on particle detection

Thin detector based on MCP-PMT between two sections of double readout sampling calorimeter split at shower maximum

But need to withstand emitted charges up to hundreds of C/cm^2

LAPPD properties characterization

LAPPDs have been tested in several test beams, to simulate ECAL working conditions

LAPPDs have to withstand a large number of incoming particles...

- 1. Multi-Channel Plates are a technology developed since the second half of 20th century
- 2. They are a multi purpose detector with applications to many fields:
- The presentation was focused on MCP applied to Photo Detection in High Energy Physics
- 3. The production technique improved in the last decades thanks to Atomic Layer Deposition
- 4. A smaller production cost allowed to large area coverage (e.g. LAPPD)
- 5. LAPPD are at the same time in production and in a phase of development and testing
- 6. Application of LAPPD to new experiments is under examination