

Characteristics of unconventional ⁸⁷Rb magneto-optical traps (MOT)

Low Energy Seminar - Matteo Da Valle

Magneto-Optical Traps

Why MOT:

- Low Temperature ($\mu K \div mK$)
- Spatial Confinement (cloud dimension ~mm)

MOT Layout:

- 3 pairs of counterpropagating LASER beams
- Quadrupole Magnetic Field (B = 0 in the center)

Doppler Cooling

Magnetic Confinement

Magnetic Confinement

Sub-Doppler cooling

Sub-Doppler Cooling – Type-II MOT

Experimental Setup

Blue MOT: Capture velocity

$$N_{Recap}(v_0) = N_0(F=1) + \frac{N_0(F=2)}{\sqrt{\pi}\sigma(v_0)} \int_{-v_c}^{v_c} e^{-\frac{(v-v_0)^2}{2\sigma(v_0)^2}} dv$$

Blue MOT: Capture velocity

Blue MOT: Trapping Efficiency

Phenomenological model $\frac{dN}{dt} = -\gamma N - \beta \int n(\vec{r})^2 d^3r$

 $\gamma N = \text{loss rate due to collisions with untrapped atoms}$ $\beta \int n(\vec{r})^2 d^3 r = \text{loss rate due to trapped atoms interaction}$

Blue MOT: Trapping Efficiency

Phenomenological model $\frac{dN}{dt} = -\gamma N - \beta \int n(\vec{r})^2 d^3r$

Type II Red MOT

Main results:

- 1. High Temperatures (> 10mK)
- 2. Poor confinement
- 3. Good lifetimes τ_{max}

Type II Red MOT – Red MOT B Shape

B′

Conclusions

	MOT	Appearance	T(mK)	$\tau_{max}(s)$	Size (mm)	
	Type-I MOT	Gaussian				
	Blue MOT	Gaussian	0.02 - 0.2	13	0.5	
	Red MOT A	Gaussian	10 - 25	14	1	
	Red MOT B	Ring-Like	> 25	9	5	
	Red MOT C	Diffuse	> 25	4	5	
Type-I N	MOT Blu	<u>ae MOT</u>	Red MOT	A Red M	I <u>OT B</u> Red	MOT C
$F' \stackrel{2}{\underset{0}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset$						
$1 - \frac{1}{\sigma}$	σ^+	σ^+	$\sigma^- \sigma^-$	$-\sigma^-$	$\sigma^- \sigma^-$	σ^-

Conclusions

- Empirical characterization of Type-II MOT
- Validation of semiclassical analysis made on ⁸⁷Rb
- Starting point for laser cooling and MOT on molecules, which is more feasible for Type-II MOT w.r.t. Type-I MOT (e.g. CaF, Yb)

Bibliography

- K. N. Jarvis, B. E. Sauer, and M. R. Tarbutt, "Characteristics of unconventional Rb magneto-optical traps", Phys. Rev. A 98, 043432 (2018).
- K. N. Jarvis, J. A. Devlin, T. E. Wall, B. E. Sauer, and M.R. Tarbutt, "Blue-Detuned Magneto-Optical Trap", Phys. Rev. Lett. 120, 083201 (2018).
- J A Devlin and M R Tarbutt, "Three-dimensional Doppler, polarization-gradient, and magneto-optical forces for atoms and molecules with dark states", New J. Phys. 18 123017 (2016).
- J. J. McClelland, A. V. Steele, B. Knuffman, K. A. Twedt, A. Schwarzkopf, and T. M. Wilson, "Bright focused ion beam sources based on laser-cooled atoms".
- J. Dalibard, C. Cohen-Tannoudji, "Laser cooling below the Doppler limit by polarization gradients: simple theoretical models" (1989)
- S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer and M.R.Tarbutt, "Molecules cooled below the Doppler limit"