Likelihood fits with variable resolution in time-dependent charm measurements at LHCb

Francesco Terzuoli

September Statistic Seminar

Charm mixing and CP violation

Why the charm sector is important?

- Interesting for CP violation measurements
 - Spacial inversion (P) + charge conjugation (C) \rightarrow CP
- Unique position among up-quarks:
 - t quark hadronizes before decaying
 - u quark is too light for interesting processes

Mixing in the charm sector

- D^0 mixing due to mass eigenstates \neq flavour eigensta
- Oscillation (mixing) parameters: $x = \frac{m_1 m_2}{\Gamma}$ and y =

• Oscillation probability $\mathscr{P}\left(D^0 \to \overline{D}^0(t)\right) = \left|q/p\right|^2 - q^2$

Francesco Terzuoli

September Statistic Seminar

Short distance contribution (off-shell) $\rightarrow x$

ates:
$$|D_{1,2}\rangle = p |D^0\rangle + q |\overline{D}^0\rangle$$

$$= \frac{\Gamma_1 - \Gamma_2}{2\Gamma} \text{ with } \Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$$

$$\frac{e^{-\Gamma t}}{2} \left(\cosh(y\Gamma t) - \cos(x\Gamma t) \right)$$

Long distance contribution (on-shell) $\rightarrow y$

Charm mixing and CP violation

Mixing in D^0 two-body decay

- - Different measured lifetimes between $D^0 \rightarrow K^- \pi^-$
 - Probe mixing dynamics through $\tau (D^0 \rightarrow K^- \pi^+)$

Francesco Terzuoli

September Statistic Seminar

Interference between $D^0 - \overline{D}^0$ mixing and decay leads to different time-dependent decay rates for each final state:

⁺ and
$$D^0 \rightarrow h^- h^+$$
, with $h = K, \pi$
and $\tau \left(D^0 \rightarrow h^- h^+ \right)$

Charm mixing and CP violation CP violation in D^0 two-body decay: the y_{CP} observable

Given a CP even final eigenstate f, it can be defined:

$$y_{CP} \equiv \frac{\hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(\overline{D}{}^0 \to f)}{2\Gamma} - 1 \approx \frac{\tau(D^0 \to K)}{\tau(D^0 \to K)}$$

with $\hat{\Gamma}$ effective decay width from $\Gamma(D^0 \rightarrow f, t) \approx e$

- From SM, CP conservation $|y_{CP} y| = 0$ and CP violation $|y_{CP} y| \leq 3 \times 10^{-5}$
- y_{CP} both probe for additional sign of CPV in charm sector and also for New Physics
- Current best y_{CP} measurement: LHCb 25^{th} May 2022
- Much upcoming data and measurement not improvable due to lack of knowledge of detector response

Francesco Terzuoli

September Statistic Seminar

 $\frac{K^{-}\pi^{+})}{(f)} - 1,$

$$-\hat{\Gamma}(D^0 \to f)t$$

from HFLAV

2
$$y_{CP} = (6.96 \pm 0.26_{stat} \pm 0.13_{syst}) \times 10^{-3}$$

The LHCb detector

The detector characteristics

- Designed for beauty and charm physics at LHC (*pp*/ions collider @ CERN)
 - Single-arm forward spectrometer
 - Efficient geometry heavy flavour physics $1.8 < \eta < 4.9$
- Tracking system
 - VErtex LOcator (VELO): silicon strip vertex detector
 - Depending on where the particle decays the detector response varies \rightarrow bias on decay time distribution
- Particle identification (RICH+calorimeters)
 - Different responses between K and π

- Trigger system \rightarrow from 30MHz to 12.5kHz
 - High charm production rate and limited bandwidth

Francesco Terzuoli

September Statistic Seminar

1. Very tight selection

2. Pre-scaled samples with much background

- $\sigma(p)/p = 0.5 1\%$
- $\sigma(IP) = (15 + 29/p_T)\mu m$
- $\sigma_{x,y,(z)}(PV) \sim 10(54)\mu m$
- 90% efficient πK separation
- Real-time calibration and alignment

Calculating the D^0 decay time

Variable resolution across the τ covered space

- In order to reduce the impact of resolution effects
 - projection of the flight distance onto the momentum

$$\tau = \frac{\overrightarrow{L} \cdot \overrightarrow{p} \, m}{\left| \overrightarrow{p} \right|^2 c}$$

September Statistic Seminar

Francesco Terzuoli

- Building a custom simulation (ToyMC): $3 \cdot 10^8$ events
- Implementing finite resolution effects extracted from Official LHCb simulation
- Simulated $\tau_{D^0} = 410.1 fs$

- D^{*+} mesons can originate from $B^{0(\pm)}$ decays
- Neutral (charged) *B* has mean lifetime $\tau = 3.83(3.97)\tau_{D^0}$
- D^0 flight distance computed w.r.t. the primary vertex then the decay time is biased
- Handling secondary decays:
 - Selection on D^0 IP or $\chi^2_{IP} \rightarrow$ still a fraction contaminates the sample and bias the extracted lifetime
 - Subtraction or inclusion in the fit \rightarrow knowledge of secondary fraction in each decay time bin
- Due to the different topology the time dependent resolution is different form the one for prompt decays

Francesco Terzuoli

September Statistic Seminar

Secondary decays: a source of systematic uncertainty

Likelihood in case of variable resolution

A common mistake

- We want to extract f the fraction of event type A given a data sample containing type A and type B events f
- In case of $p(x|A) = G(0,\sigma)$ and $p(x|B) = G(1,\sigma)$ the likelihood can be written as

$$\mathscr{L}(f;x) = \prod_{i=1}^{N} fG(x_i, 1, \sigma) + (1 - f)G(x_i, 0)$$

In case of σ varying on event basis, one could be tempted to write

$$\mathscr{L}(f;x) = \prod_{i=1}^{N} fG(x_i, 1, \sigma_i) + (1 - f)G(x_i, 0)$$

This leads to very dissatisfying results

 $(0,\sigma)$. (1)

 $(0,\sigma_i)$. (2)

Likelihood in case of variable resolution Study of common mistake

- Using a Jupyter notebook a Toy MC has been produced: link here
- A simpler case is studied for computational issue:
 - instead of σ_i varying event by event, it is fixed to a value but $\sigma_A \neq \sigma_R$
 - The likelihood \mathscr{L} in (2) on prev. slide is used to perform unbinned MLE for f
- 150 pseudo experiments have been generated, with 150 events each
 - f is fixed to 1/3
- Once computed the log-likelihood, its maximum is searched in a numerical way through a scan for f in [0,1]
- Once extracted \hat{f}_{MLE} for every pseudo experiment, its distribution is plotted

Francesco Terzuoli

September Statistic Seminar

.]	<pre>for n in range(150): logLL_wrong = np.full(100, 0) sample_1 = stats.norm.rvs(size = 50, loc = 0, scale = 1) sigma_1 = np.full(50, 1) sample_2 = stats.norm.rvs(size = 100, loc = 1, scale = 2) sigma_2 = np.full(100, 2) sample = np.concatenate((sample_1, sample_2)) sigma = np.concatenate((sigma_1, sigma_2)) for i in range(100): for s in range(150): logLL_wrong[i] += np.log(frac_space[i]*stats.norm.pdf[sample[s],\</pre>	
	<pre>scale=sigma[s]) + (1-frac_space[i])*stats.norm.pdf(sample[s], loc=1, </pre>	scale=sigma
	logLL_wrong = logLL_wrong - LLmax	
	<pre>fpos = np.where(logLL_wrong == 0)</pre>	
	<pre>fraction_wrong.append(frac_space[fpos][-1])</pre>	

Likelihood in case of variable resolution

Results of common mistake

Francesco Terzuoli

September Statistic Seminar

- Several issues
 - This estimator is not consistent (consistency expected from MLE)
 - Degeneracy towards the extreme cases
 - The expected value has not been retrieved once

$$\mathscr{L}(f;x) = \prod_{i=1}^{N} fG(x_i, 1, \sigma_i) + (1 - f)G(x_i, 0, \sigma_i)$$
(2)

- What is happening?
 - It seems that each the two pieces of (2) are getting confused with the σ_i belonging to the other type

Likelihood in case of variable resolution

Recovering the common mistake

The likelihood does not take in account the conditional probabilities

• $p(\sigma_i | A)$ and $p(\sigma_i | B)$, hence the "confusion"

In fact, the problem has two observables (x_i, σ_i) , then the Likelihood must be written

$$\mathscr{L}(f;x) = \prod_{i=1}^{N} fp(x_i, \sigma_i | A) + (1 - f)p(x_i, \sigma_i | B)$$

and remembering $p(x_i, \sigma_i | X) = p(x_i | \sigma_i, X) p(\sigma_i | X)$, then

$$\mathscr{L}(f;x) = \prod_{i=1}^{N} fG(x_i, 1, \sigma_i) p(\sigma_i | A) + (1 - f)G(x_i, 0, \sigma_i)$$

• It is found $<\hat{f}_{MLE}> = 0.344 \pm 0.007$

Francesco Terzuoli

September Statistic Seminar

Likelihood in case of variable resolution Conclusions

- In case of variable resolution in template fitting with different data type leading to a compound pdf

 - The penalty is a biased and inconsistent estimation
- When a simpler approach is allowed

From
$$\mathscr{L}(f; x) = \prod_{i=1}^{N} fG(x_i, 1, \sigma_i) p(\sigma_i | A) + (1 - f)$$

- Does not affect the Likelihood shape and its maximum
- without incurring in fear of utterly mishandling this systematic uncertainty

The full likelihood must be taken in account taking care of the distribution of σ_i itself within the classes

 $G(x_0,\sigma_i)p(\sigma_i | B)$

in case $p(\sigma_i | A) = p(\sigma_i | B)$ for every *i*, then it can be factorised out as it is just a multiplicative factor

After this consideration we can move on on the y_{CP} analysis (maybe even absolute lifetime in the far future)

A side note

Jupyter notebook

- This study is based on ref. [1]
 - The decision to rerun a similar study on Jupyter Notebooks is mainly due to

 - Didactical purpose: such notebooks can be reproposed to students for exercise
 - Available other notebook:
 - MLE on exponential
 - Confidence Intervals on exponential
 - Hypothesis testing

Francesco Terzuoli

 H_0 : we have N poissonian distributions with known mean ϕ_0

Compound hypothesis

 H_{λ} : we have N poissonian distributions with mean rising as $\phi(t) = \phi_0 e^{\lambda t}$

In the compund hypothesis the Likelihood is

$$\mathcal{L}(\lambda) = \prod_{j=1}^{N} \frac{n_j e^{-\mu_j}}{n_j!}, \text{ with } \mu_j = \phi_0 e^{\lambda j \Delta t} \text{ where } \Delta t = t_j - t_{j-1}$$

The MLP test is

$$s = \left[\frac{\partial \ln \mathcal{L}}{\partial \lambda}\right]_{\lambda=0} = \Delta t \sum_{j=1}^{n} n_j j - \phi_0 \Delta t \sum_{j=1}^{n} j > c_{\alpha}$$

and taking out addition and multiplication constant we obtain

$$\tilde{s} = \sum_{j=1}^{n} n_j j$$

which ias asympotically Gaussian distributed with

• Hypothesis 0:
$$\mu_0 = \phi_0 \frac{N(N+1)}{2}$$
 and $\sigma_0^2 = \phi_0 \frac{N(N+1)(2N+1)}{6}$

• Hypothesis λ : $\mu_{\lambda} = \mu_0 + \lambda \Delta t \sum_{j=1}^{n} j^2$ and $\sigma_{\lambda}^2 = \sigma_0^2 + \lambda \phi_0 \Delta t \sum_{j=1}^{n} j^2$

In order to H_0 to be rejected we need to impose

$$\int_{c_{\alpha}}^{+\infty} \operatorname{Gauss}(\mu_0, \sigma_0) = \alpha,$$

thus obtaing the threshold value c_{α} for our test statistic \tilde{s} .

Let's see some examples

```
[ ] phi_0 = 24
    N = 10000
    mu = phi_0*N*(N+1)/2
    var = phi_0*N*(N+1)*(2*N+1)/6
    iterations = 10000
    threshold = stats.norm.ppf(0.999, loc=mu, scale=np.sqrt(var)) #<0.1% false alarm
    count falsealarm=0
    test_array = np.zeros(iterations
```

Faster and deeper understanding of the phenomenon as one can "play" with the case and parameters

Side study of numerical approximation and computation of point/interval estimation using various tool

28/09/2023

September Statistic Seminar

References

California, September 8-11, 2003

[2] F. Terzuoli, Precision measurement of time-dependent charm observables at high-luminosity LHCb, CERN-THESIS-2022-029

[3] F. James, Statistical Methods for Experimental Physics (2nd edition), World Scientific Publishing, 2006

[4] Jupyter Notebook: Likelihood fits with variable resolution

[1] G. Punzi, Comments on Likelihood Fits with Variable Resolution, PHYSTAT2003, SLAC, Stanford,