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Search for DM

• Cosmological ΛCDM model

• Weakly Interacting Massive Particles (WIMPs)

• Particles are stable, massive, and interacts only 
through weak and gravitational interactions.

• Different approaches: Collider search, Direct 
detection and Indirect detection.

• Indirect: WIMPs annihilate into SM particles 
(bosons, quarks, leptons)
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Detection of 
γ-ray flux

CTA
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Expected γ-ray flux

• Τ1 𝜉depends on whether the DM particle is Majorana fermion or Dirac fermion

• DM annihilation cross-section averaged over the velocity distribution 𝜎𝑣  

• DM particle mass 𝑚𝜒

• J-factor describes the DM distribution and the amount of DM annihilations within 
the source 8
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Statistical analysis

• A widely used procedure to establish discovery is 
based on a frequentist significance test using a 
likelihood ratio as a test statistic.

• We use log-likelihood ratio statistical test to constrain 
the DM annihilation cross-section setting upper limits.
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Formalism
• Suppose, we are measuring x, and compute a histogram for all the 

events in the signal sample.

• The expectation value of number of events in each bin will be:
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Formalism
• Suppose, we are measuring x, and compute a histogram for all the 

events in the signal sample.

• The expectation value of number of events in each bin will be:

• The mean number of entries in the 𝑖𝑡ℎ  bin from signal and background 
are:
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𝐸 𝑛𝑖 = 𝜇𝑠𝑖 + 𝑏𝑖
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𝑏𝑖𝑛 𝑖
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Formalism
• Now we compute the likelihood function which is the product of 

Poisson probabilities for all bins.
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Formalism
• Now we compute the likelihood function which is the product of 

Poisson probabilities for all bins.

• Further measurements to constrain the nuisance parameters:
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Formalism
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Profile likelihood ratio
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Formalism
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Denotes the value of θ that 
maximizes likelihood for the 
specified µ (conditional)
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Formalism
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Denotes the value of θ that 
maximizes likelihood for the 
specified µ (conditional)

Unconditional ML 
estimators

Profile likelihood ratio
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𝐿 Ƹ𝜇, ෡𝜽



Formalism

• [G. Casella, R.L. Berger, Statistical Inference, Duxburry Press, 1990] - −2𝑙𝑛𝜆 
converges in distribution to a 𝜒2 random variable with 𝑘 degrees of freedom.
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Formalism

• [G. Casella, R.L. Berger, Statistical Inference, Duxburry Press, 1990] - −2𝑙𝑛𝜆 
converges in distribution to a 𝜒2 random variable with 𝑘 degrees of freedom.
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𝑡𝜇 = −2 ln 𝜆 𝜇



Formalism

• No condition on values of 𝜇.

• As 𝜇 = 0 : background-only events, presence of a new signal can only 
increase the mean event rate beyond what is expected from 
background alone.
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Formalism

• No condition on values of 𝜇.

• As 𝜇 = 0 : background-only events, presence of a new signal can only 
increase the mean event rate beyond what is expected from 
background alone.

• 𝝁 ≥ 𝟎
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Formalism

• For Ƹ𝜇 < 0, the best level of agreement between the data and any 
physical value of 𝜇 occurs for 𝜇 = 0.
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Formalism

• For Ƹ𝜇 < 0, the best level of agreement between the data and any 
physical value of 𝜇 occurs for 𝜇 = 0.
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Formalism : Upper limits
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• To establish an upper limit on a parameter, let us define:



Formalism : Upper limits
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𝑞𝜇 = ቊ
−2 ln 𝜆 𝜇 ො𝜇 ≤ 𝜇
0 ො𝜇 > 𝜇

• To establish an upper limit on a parameter, let us define:

• To set an upper limit, we are only interested in the data corresponding 
to µ > the ML estimator of µ.



Formalism : Upper limits

• But for the condition: 𝜇 ≥ 0
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Examples:  [C. Armand and B. Herrmann]

• 'Dark matter indirect detection limits from complete annihilation 
patterns'

• AIM: Studying simulated data of a dwarf galaxy to derive constraints 
on the DM annihilation cross-section within the singlet scalar dark 
matter model.

• Assumptions:
• Candidate: real singlet scalar S
• DM annihilation into fermions proceeds solely through s-channel Higgs exchange.

• DM annihilation into bosonic states can proceed through direct four-vertex interactions.

https://iopscience.iop.org/article/10.1088/1475-
7516/2022/11/055/pdf
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Expected γ-ray flux

• Τ1 𝜉depends on whether the DM particle is Majorana fermion or Dirac fermion

• DM annihilation cross-section averaged over the velocity distribution 𝜎𝑣  

• DM particle mass 𝑚𝜒

• J-factor describes the DM distribution and the amount of DM annihilations within 
the source 27
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Feynman 
diagrams for all 
relevant 
annihilation 
products
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Examples:

https://iopscience.iop.org/article/10.1088/1475-
7516/2022/11/055/pdf
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Examples:

https://iopscience.iop.org/article/10.1088/1475-
7516/2022/11/055/pdf
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• 𝑚𝑆 = Τ𝑚ℎ 2 ≈ 62.5𝐺𝑒𝑉 corresponds to Higgs resonance.
•   𝑚𝑆 ≈ 𝑚𝑊 ≈ 80𝐺𝑒𝑉 , DM particles get heavier and produce more energetic SM particles



Examples: [Thorpe-Morgan et al.]

• 'Annihilating Dark Matter Search with 12 Years of Fermi-LAT Data in 
Nearby Galaxy Clusters'

• AIM: Studying observed data of fermi-LAT of galaxy clusters to derive 
constraints on the DM annihilation cross-section to discuss the 
potential of a boost to the signal due to the presence of substructures 
in the DM halos

• Assumptions:

• Cases with assuming the presence of substructures that can significantly boost the 
expected signal from the outer parts of halos.

• The spatial and mass distributions are taken from Sánchez-Conde & Prada (2014)

https://arxiv.org/pdf/2010.11006.pdf 31

https://academic.oup.com/mnras/article/442/3/2271/1038224


Examples:

https://arxiv.org/pdf/2010.11006.pdf 32
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Examples:

https://arxiv.org/pdf/2010.11006.pdf 33

Fig: The left panel shows the results for smooth DM halos, while the right one shows the 
results when the presence of substructures is included



Examples:

https://arxiv.org/pdf/2010.11006.pdf 34

Fig: The left panel shows the results for smooth DM halos, while the right one shows the 
results when the presence of substructures is included
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Thank you
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Extra Slides
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Applications

• In this publication of 'Dark matter 
indirect detection limits from 
complete annihilation patterns' :

https://iopscience.iop.org/article/10.1088/1475-7516/2022/11/055/pdf 38



Formalism

• Here,    denotes the value of θ that maximizes L for the specified µ. 
(conditional maximum-likelihood (ML) estimator)

• The denominator is the maximized (unconditional) likelihood function.

• We generally define the test statistic as:

39
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Search for dark 
matter
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Statistical analysis

• A widely used procedure to establish 
discovery is based on a frequentist 
significance test using a likelihood ratio as a 
test statistic.

• We use log-likelihood ratio statistical test to 
constrain the DM annihilation cross-section 
setting upper limits.
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