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Search for dark
> matter

e Cosmological \CDM model

Weakly Interacting Massive Particles (WIMPs)

Particles are stable, massive, and interacts only
through weak and gravitational interactions

Different approaches: Collider search, Direct
detection and Indirect detection.

Indirect: WIMPs annihilate into SM particles
(bosons, quarks, leptons)
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Expected y-ray flux

dp, 1 (o) de
dE, " € 4nmZ ZBf xJ

« 1/&depends on whether the DM particle is Majorana fermion or Dirac fermion
« DM annihilation cross-section averaged over the velocity distribution (o)

* DM particle massm,

e J-factor describes the DM distribution and the amount of DM annihilations within
the source



Statistical analysis

« Awidely used procedure to establish discovery Is
based on a frequentist significance test using a
likelihood ratio as a test statistic.

* We use log-likelihood ratio statistical test to constrain
the DM annihilation cross-section setting upper limits.



Formalism

* Suppose, we are measuring X, and compute a histogram for all the
events in the signal sample.

* The expectation value of number of events in each bin will be:
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Formalism

* Suppose, we are measuring X, and compute a histogram for all the
events in the signal sample.

* The expectation value of number of events in each bin will be:

E[n;] = us; + b;

* The mean number of entries in the i bin from signal and background
are:

Si = Stot fo(x;0,)dx

bini

b; = btot fs(x; 0p)dx

bin i



Formalism

* Now we compute the likelihood function which is the product of
Poisson probabilities for all bins.

L(u, 0) = 1_[ iy * b) e~ (usj+bj)




Formalism

* Now we compute the likelihood function which is the product of
Poisson probabilities for all bins.

T (us; + b )nj
L(u, 9) — J J e—([,tSJ+bJ)
l l n;!
j=1 /
 Further measurements to constrain the nuisance parameters:

N 1 p\Y M my
Ly, 0) = (1s; + by) o—(usi+b)) | T2k o-up
mk! Background
k=1

j=1 !



Formalism

Profile likelihood ratio

Au) =
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Profile likelihood ratio /\

= Denotes the value of O that
L ('L[ 0) maximizes likelihood for the
)

specified u (conditional)
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Formalism

Profile likelihood ratio /\

2) Denotes the value of O that

L 'L[ 0 maximizes likelihood for the
g specified u (conditional)
L(7.9)

$

Unconditional ML
estimators

Au) =
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Formalism

e [G. Casella, R.L. Berger, Statistical Inference, Duxburry Press, 1990] - —2InA
converges in distribution to a ¥? random variable with k degrees of freedom.
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Formalism

e [G. Casella, R.L. Berger, Statistical Inference, Duxburry Press, 1990] - —2InA
converges in distribution to a ¥? random variable with k degrees of freedom.

t, = —2InA(u)

Pp = /:ﬁ f(t#\,u,] dt,

p,obs
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Formalism

t, = —2InA(u)

* No condition on values of u.

* As u = 0 : background-only events, presence of a new signal can only
increase the mean event rate beyond what is expected from
background alone.



Formalism

t, = —2InA(u)
* No condition on values of u.

* As u = 0 : background-only events, presence of a new signal can only
increase the mean event rate beyond what is expected from
background alone.

-uz=0



Formalism

(L (1 8w
~ &@m) p=0
Aa) = L uﬁ(u)) X

\L (0,5(0)) H=9

* For i <0, the best level of agreement between the data and any
physical value of u occurs for u = 0.



Formalism

(L (1 8w
~ &@m) p=0
Aa) = L uﬁ(u)) X

\L (0,5(0)) H=9

* For i <0, the best level of agreement between the data and any
physical value of u occurs for u = 0.

( =
L (18
—21n — f=0
i L(48)
t,=—-2InA(n) =< =
g L(u,e(u))
—21n = pa<o
L 0,9(0)>



Formalism : Upper limits

» To establish an upper limit on a parameter, let us define:
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Formalism : Upper limits

» To establish an upper limit on a parameter, let us define:

_)=2InA(w) A=<pu
=10 a>u

* To set an upper limit, we are only interested in the data corresponding
to u > the ML estimator of p.



Formalism : Upper limits

* But for the condition: u =0
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Examples: [C. Armand and B. Herrmann]

* 'Dark matter indirect detection limits from complete annihilation
patterns'

e AIM: Studying simulated data of a dwarf galaxy to derive constraints
on the DM annihilation cross-section within the singlet scalar dark
matter model.

* Assumptions:

* Candidate: real singlet scalar S
DM annihilationinto fermions proceeds solely through s-channel Higgs exchange.
DM annihilationinto bosonic states can proceed through direct four-vertex interactions.

https://iopscience.iop.org/article/10.1088/1475-
7516/2022/11/055/pdf



Expected y-ray flux

dp, 1 (o) de
dE, " € 4nmZ ZBf xJ

« 1/&depends on whether the DM particle is Majorana fermion or Dirac fermion
« DM annihilation cross-section averaged over the velocity distribution (o)
* DM particle massm,

e J-factor describes the DM distribution and the amount of DM annihilations within
the source
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Figure 1. Tree-level Feynman diagrams for scalar pair annihilation into fermions (f =
e, Toud, e s, t.b), gauge (V = W#*, Z") and Higgs bosons (h). Diagrams corresponding to u-

channels obtained through crossing are not separately depicted. Annihilation into 4+ and gg final
states proceeds through effective couplings to the Higes boson A",
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Examples:

fO for </O'?) > (ov)
L ((O’U>, ﬁB (W):i(W)) —
—21n — for 0 < {(ov) < (ov)
TS = . L({ov), Ng.J)
£ (tov), By (@), J({ov)) __
—21In = - for (ov) <O
& £ (0,850, /()

https://iopscience.iop.org/article/10.1088/1475-
7516/2022/11/055/pdf



Examples:

\.\ Sculptor, Singlet scalar DM model
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=m; /2 = 62.5GeV corresponds to Higgs resonance.
my, = 80GeV, DM particles get heavier and produce more energetic SM particles

https://iopscience.iop.org/article/10.1088/1475-
7516/2022/11/055/pdf
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Examplesz [Thorpe-Morgan et al.]

* 'Annihilating Dark Matter Search with 12 Years of Fermi-LAT Data in
Nearby Galaxy Clusters’

e AIM: Studying observed data of fermi-LAT of galaxy clusters to derive
constraints on the DM annihilation cross-section to discuss the
potential of a boost to the signal due to the presence of substructures
in the DM halos

* Assumptions:

* Cases with assuming the presence of substructures that can significantly boost the
expected signal from the outer parts of halos.

* The spatial and mass distributions are taken from Sanchez-Conde & Prada (2014)

https://arxiv.org /pdf/2010.11006.pdf


https://academic.oup.com/mnras/article/442/3/2271/1038224

Examples:
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—— no substructures
------ with substructures

10-2 BT 107
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dj/dQ = j p2(Ddl
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https://arxiv.org /pdf/2010.11006.pdf
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results when the presence of substructures is included

https://arxiv.org /pdf/2010.11006.pdf
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Examples:

10—21 :

1022 E

cm3s~1

’

=

9
[
w
L

<gVv=>=

10—24 4

10—25

w+w-
—— Virgo —— Perseus
—— Coma --- Centaurus

—— Fornax === Centaurus+Virgo

102

103

E, GeV

cm3s—t

10—21

10—22 .

]

'_I

o
O
w

<gv>

10—24 i

10—25

W* W~ (boosted)

—— Virgp —— Perseus
—— Coma --- Centaurus
—— Fornax == Centaurus+Virgo

102

103
E, GeV

Fig: The left panel shows the results for smooth DM halos, while the right one shows the
results when the presence of substructures is included

https://arxiv.org /pdf/2010.11006.pdf
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I Applications

* In this publication of 'Dark matter
indirect detection limits from
complete annihilation patterns':

TS ={ —2n

https://iopscience.iop.org/article/10.1088/1475-7516/2022/11/055/pdf

i

for (ov) > (ov),

—

for 0 < (ov) < (ov),

—

for (ov) <0,
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Formalism i
(1,0)

L
L(f..0)

A(p) =

”~

* Here, é denotes the value of B that maximizes L for the specified p.
(conditional maximume-likelihood (ML) estimator)

* The denominatoris the maximized (unconditional) likelihood function.
* We generally define the test statistic as:

t, =—2InA(n)



As when using g,,, the upper limit on p at confidence level 1 —a is found by setting p,, = «
and solving for p, which reduces to the same result as found when using ¢g,,, namely,

fup = fi + 0@ 11 — @) . (69)

That is, to the extent that the Wald approximation holds, the two statistics ¢, and g, lead
to identical upper limits.
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Search for dark
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* A widely used procedure to establish
discovery is based on a frequentist

significance test using a likelihood ratio as a Statistical N3 Iysis
test statistic.

* We use log-likelihood ratio statistical test to
constrain the DM annihilation cross-section
setting upper limits.
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