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1. Introduction

* PeVatron is a term used to describe astrophysical sources that are
able to accelerate particles up to 10%>eV (1 PeV)

e Several source classes have been proposed as potential PeVatrons,
but Supernova Remnants (SNRs) have been the preferred candidates

* Galactic PeVatron have been detected, but none of them are proven
to be related to SNRs

* Crab nebula is an example of a leptonic PeVatron (in this work
hadronic PeVatrons are being searched for)
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* CTA is the next generation Imaging Atmosferic Cherenkov Telescope
(IACT) system.

* It will be located at Paranal Observatory (Chile) and Roque de los
Mucachos Observatory (Spain)—>whole sky observations

* Energy range from 20 GeV to 200 TeV

* Improved sensitivity is expected to lead to discovery of many more
astrophysical sources.
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2. Simulation and analysis of CTA data

* The simulation and analysis of CTA dana are based on the instrument
response functions (IRFs)

* The morphology of extended y-ray sources is modelled using 2D
symmetric Gaussians, and source extensions are given as the width
(o) of the Gaussian.

e Simulated CTA event data are drawn from Poisson distributed random
variables around their bin-wise expectation.

* A binned 3D-likelihood analysis is performed in the framework of
gammapy.

* The population of Galactic SNRs is simulated with a Monte Carlo
approach, in which the distribution of SNe in time and space is
randomly drawn in multiple samples.



3. Derivation of spectral cutoff lower limits

e PeVatron searches with CTA rely on the derivation of statistical
statements on the inverse energy cutoff parameter A.

 When a significant cutoff detection is impossible, frequentist upper
limits 2YL on the inverse cutoff parameter at a given confidence level
CL are of high relevance.

* Limits on the inverse spectral cutoff A are investigated within y-ray
emission models.



The Poisson likelihood:

nici
ci!

L(2,01¢) = ITiz, exp(—n;)

6 — nuisance parameters

A —the inverse energy cutoff

¢ = (cq, ..., Cy) — Simulated event counts

n = n(A,0) — predicted counts

Cash statistic:

C1,0) = ZZ.(ni —¢;Inn;)



3.1. Profile likelihood

* This method is an example for
the inversion of a frequentist
hypothesis test

* Let L(A) = maxgL(4,0]|c) be
profile likelihood, and
C(1) = maxyC(A,0)
corresponding Cash statistic

The likelihood ratio test statistic:

Ly o
A(Q) = ZlnL /T)—C(/l) c(A)

¢ ] - maximum likelihood estimator for the inverse
energy cutoff over the constrained range 1 = 0




Likelihood ratio statistic for the analysis of a typical y-ray source:
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* The likelihood ratio test statistic equation is the test statistic of the

null hypothesis (Hy: A = 1) against the alternative hypothesis
(Hi: A =A)

* The alternative hypothesis is accepted when the test statistic is
smaller than or equal to the critical value at a given confidence level
CL (the horizontal line in the previous slide)



3.2. Markov-Chain Monte Carlo (MCMC)

* Upper limit of the inverse Posterior probability density
cutoff parameter can be
derived when the probability L(2,0|8) p(1, 6)
distribution of model p(A,0]|c) = e

parameters is expressed in the
framework of Bayesian

ter‘minology. * p(4, 0) — probability density for the model
parameters

« p(@) = [dAd6 L(A,6]2) p(A,6)



3.3. Bootstrap

* This method resamples binned ¢ Non-parametric bootstrap

y-ray events (C) as bootstrap * Parametric bootstraps:
samples (C*) * Poisson bootstrap

* The percentile method is used to » Best fit bootstrap
get the smallest positive upper

limit on the |92/ers$]_CL;]toff_ o parametric and non-parametric
parameter (47~) which satisfies: bootstrap is that the total

QUL number of events is a random
CL < f d}{*f(;{*) Varlable
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e Difference between the



3.4. Performance comparison N\ =

Point-like source analysis

* The energy cutoff limits obtained with the
bootstrap and MCMC methods are 4
calculated with a precision better than 2%.

* Two different sets of prior density A A A
distributions for the model parameters are
investigated for the MCMC method.

* The uniformity of prior density depends

on the choice of the parameter. 0.3

* Results based on uniform prior densities S,
are compared to results obtained with
priors based on gamma distributed 0.1 /

random variables.

Index
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Point-like source energy cutoff sensitivity

as a function of the true energy cutoff
for different methods relative to the
respective sensitivity achievable with a
1-dimensional profile likelihood analysis.

The different panels show the relative
sensitivity for different point-like source

parameters in terms of flux

normalization ¢, and index I
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Conclusions

* The profile likelihood method provides a computationally very
efficient way to derive lower limits on the energy cutoff.

* Other methods are less sensitive or a possible sensitivity
improvement in restricted parameter ranges results from the choice
of the prior distributions(MCMC).

* The computational effort to derive reasonably precise limits is larger
for bootstrap and MCMC implementations than for the profile
likelihood method.

* Bootstrap and MCMC methods can provide an important alternative
in cases where the profile likelihood method cannot be applied.
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