Cryogenic (superconducting) detectors for fundamental Physics experiments

PhD School in Experimental Physics - 31/05/2023

F. Paolucci

Quantum detection

quantum detection

Why GHz-THz?

GHz-THz detection

GHz-THz detection

Superconducting detectors

Kinetic inductance detector (KID)

Proc. SPIE 9914, 99140N (2016) Commun. Phys. 2, 124 (2019)

Cold electron bolometer (CEB)

Commun Phys 2, 104 (2019)

Introduction to superconductivity

• Zero-resistance under a certain temperature (critical temperature, T_C)

• Maximum current [critical current, $I_C(T)$] for dissipationless transport

• Maximum magnetic field [critical field, $H_C(T)$] for superconductivity

• Expulsion of the magnetic field for $H < H_C(T)$: perfect diamagnetism

• Peak of the electronic specific heat at T_C

<u>Superconductivity cannot be described only by perfect conductance</u>

- 35 superconducting elements with T_c from 12 mK (W) to 9.3 K (Nb)
- Good metals are not superconductors (Cu, Ag, Au, Pt)
- Many alloys are superconductors
 (NbTi, PbBi) also when constitutents are
 <u>NOT</u> SC (CuS)
- Ceramic materials are superconductors
- Iron based superconductors (also magnetic)

Superconducting elements with their transition temp & Critical field

Material	T _c (K)	H _{cf} (G at 0 K)	Material	T _c (K)	H _{cf} (G at 0 K)
Ti	0.39	100	La	6.0	1100
v	5.38	1420	Hf	0.12	-
Zr	0.546	47	Ta	4.483	830
Nb	9.5	1980	w	0.012	1.07
Мо	0.92	95	Re	1.4	198
Тс	7.77	1410	Os	0.655	65
Ru	0.51	70	ŀ	0.14	19
Rh	0.003	0.049	Hg	4.153	412
Cd	0.56	30	TI	2.39	171
In	3.404	293	РЬ	7.193	803
Sn	3.722	309	ТЪ	1.368	1.62
					C

How is it possible?

Two *almost equivalent* theories: **BCS** (micro) and **GL** (phenomenological)

The ground state of a metal is unstable to the creation of a couple of electrons: **Cooper pair**

Small attractive potential needed

This state has a lower energy than a metal

All CPs have same energy: condensate

How is it possible?

 $\psi(\vec{r})$: wavefunction as complex order parameter

How is it possible?

 $\psi(\vec{r})$: wavefunction as complex order parameter

 $|\psi(\vec{r})|^2 = n_s(\vec{r})$ number of superconducting electrons

$$\psi(\vec{r}) = \sqrt{n_s(\vec{r})} e^{i\varphi(\vec{r})}$$

Coherence length [dimension of $\psi(\vec{r})$]

$$\xi_0 = \sqrt{\frac{\hbar}{\rho N_F e^2 \Delta_0}}$$

Penetration depth of magnetic field

Superconductivity - Remarks

$$e^{*} = 2e$$

 $m^* = 2m_0$ no corrections as in metals (no influence of phonons or band structure)

$$n_S = \frac{1}{2}n$$
 conservation of charge

 $|\psi_{\infty}|^2 = n_S$

superconducting quantum detection

Cryogenics

Measurements at cryogenic temperatures

Cooling of 50K plate and 4K plate with:

- Liquid Helium
 - Cryocooler

Cooling of Still, 100mK, MC with: Mixture He³-He⁴

Mixing Chamber: He³ rich phase He³ diluted phase (6.6%He³, 93.4He⁴)

Transport measurements:

- Low temperature filtered lines
- Cryogenic temperatures amplifiers
- Room temperature precision electronics

http://research.physics.illinois.edu/bezryadin/links/practical%20Cryogenics.pdf

Measurements at cryogenic temperatures

http://research.physics.illinois.edu/bezryadin/links/practical%20Cryogenics.pdf

superconducting quantum detection

superconducting quantum detection

Bolometers or calorimeters

Energy exchange at nanoscale

 \dot{Q}_e : e-e interaction \dot{Q}_v : e-photon interaction \dot{Q}_{e-ph} : e-phonon coupling

Vanishing Kapitza resistance:

sample phonons thermalized with substrate

F.G. et al., Rev. Mod. Phys. 78, 217–274 (2006)

Electron-electron heat diffusion

Transition-Edge Sensor

TES - idea

Nano-Fabrication

CUT

Examples of devices

TES

K. D. Irwin, "An application of electrothermal feedback for high resolution cryogenic particle detection". Appl. Phys. Lett., 66, 1998 (1995)

TES – antenna coupling

TES

Superconductor transition due to heating **Zero-current Bias** Working at critical temperature **Andreev mirror** High efficiency

K. D. Irwin, "An application of electrothermal feedback for high resolution cryogenic particle detection". Appl. Phys. Lett., 66, 1998 (1995)

K. D. Irwin, "An application of electrothermal feedback for high resolution cryogenic particle detection". Appl. Phys. Lett., 66, 1998 (1995)

TES - Readout

TES - bolometer

$$NEP_{tot} = \sqrt{NEP_{TFN,nano-TES}^2 + NEP_{Jo}^2 + NEP_{R_S}^2},$$

$$NEP_{TFN,nano-TES} = \sqrt{4\Upsilon G_{th,nano-TES} k_B T_C^2},$$

$$NEP_{Jo} = \sqrt{2k_B R_N T_C} \frac{G_{th,nano-TES} T_C}{V\alpha} \sqrt{1 + 4\pi^2 f^2 \tau_{eff}^2},$$

$$NEP_{R_{S}} = \sqrt{4k_{B}R_{S}T_{bath}} \frac{G_{th,nano-TES}T_{C}}{V\alpha} \sqrt{(1-L_{0})^{2} + 4\pi^{2}f^{2}\tau_{eff}^{2}},$$

$$\tau = \frac{C_{e,A}}{G_{th,A}}. \qquad \qquad G_{th,A} = \frac{dP_{e-ph}}{dT_A} = 5\Sigma_A \mathcal{V}_A T_A^4.$$

 $C_{e,A} = \Upsilon_A \mathcal{V}_A T_{c,A},$

 Υ_A being the Sommerfeld coefficient of A.

Negative Electro-Thermal Feedback

Fast or sensitive

K. D. Irwin, "An application of electrothermal feedback for high resolution cryogenic particle detection". Appl. Phys. Lett., 66, 1998 (1995)

TES - calorimeter

Negative Electro-Thermal Feedback

 $C_{e,A} = \Upsilon_A \mathcal{V}_A T_{c,A},$

 $\Gamma \Upsilon_A$ being the Sommerfeld coefficient of A.

Fast or sensitive

K. D. Irwin, "An application of electrothermal feedback for high resolution cryogenic particle detection". Appl. Phys. Lett., 66, 1998 (1995)

TES - Multiplexina

								$v/\delta v$	
n-T	T _c (mK)	τ (μs)	$ au_{eff}$ (µs)	$NEP_{TFN} (W/\sqrt{Hz})$	$\text{NEP}_{\text{tot}} (\text{W}/\sqrt{\text{Hz}})$	δv (GHz)	100 GHz	300 GHz	1 THz
1	128	6	0.01	5.2×10^{-20}	5.2×10^{-20}	100	1	3	10
1*		6	0.01	1.1×10^{-16}	4.7×10^{-16}	2×10^{5}	4×10^{-4}	1×10^{-3}	4×10^{-3}
2	139	5	0.2	6.7×10^{-20}	6.7×10^{-20}	540	0.18	0.55	1.8
2*		5	0.2	1.5×10^{-16}	8.3×10^{-15}	1×10^{6}	8×10^{-5}	2×10^{-4}	8×10^{-4}

Frequency division multiplexing

Microwave resonator multiplexing

TES - Multiplexing

Wirebond Pads

TES - CMB

BICEP-2	ACTpol	POLARBEAR		
Keck Array	SPTpol	ABS		
		HWP Drive Motor ABS Cryostat Top Air-Bearing Rotor Sapphire HWP		

Kinetic Inductance Detector

KID

KID

Kinetic inductance of a superconductor

$$\psi_1 = \sqrt{n_{S1}} e^{-i\varphi_1}$$

Cooper pair condensate

- A lot of energy to "move" the condensate
- Much stronger than for single electrons
- Energy stored described by inductance

KID – principle

Inductance increases

Change of phase of the signal

Impedance of resonator

Radiation increases Temperature

Change of resonant frequency

Cooper pair break

Critical supercurrent decreases

Nano-KID – structure and set-up

Commun. Phys. 2, 124 (2019)

KID – measurements

8 GHz signal

Zepto 10^-21

KID

KID - multiplexing

Change of resonance frequency by setting L and C