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What’s a GAN

GAN stands for Generative Adversarial Network

• The specific goal of GANs is to generate data from scratch

• Typical domain is Images but not only (Videos, Music, 
Texts, Functions, Simulation Data etc)

• GANs are made up by 2 main blocks:

• GENERATOR (Leo): it generates fake data from noise
distribution, by pretending they are true

• DISCRIMINATOR (Tom): it wants to prove the 
generated date are fake



What’s a GAN

• GAN pits two neural networks against each other: 
• a generator network G(z)
• a discriminator network D(x).

• The generator tries to mimic examples from a
training dataset, which is sampled from the true
data distribution q(x)). It does so by transforming a
random source of noise received as input into a
synthetic sample.

• The discriminator receives a sample, but it is not
told where the sample comes from. Its job is to
predict whether it is a real data sample or a
synthetic sample.

• The discriminator is trained to make accurate
predictions, and the generator is trained to output
samples that fool the discriminator into thinking
they came from the data distribution.



What’s G?

• The Generator alone will just create
random noise.

• The Discriminator “conceptually” provides
guidance to the Generator on what
images to create.

• The Generator samples noise z using a normal or uniform distribution. 
• With z as an input, it uses a generator G to create an image x (x=G(z))
• It performs multiple transposed de-convolution to upsample z and generate the image x



Information Theory Background

• The information I of an event x with probability  distribution P(x) is defined as:   𝐼 𝑥 = − log2 𝑃(𝑥)

• The entropy H measures the amount of information and is defined as:  𝐻 𝑥 = 𝐸𝑥∼𝑃[ 𝐼 𝑥 ]

• Then we have: 𝐻 𝑥 = − 𝐸𝑥∼𝑃[log2 𝑃(𝑥)] = σ𝑥𝑃 𝑥 log2 𝑃 𝑥 )

• Example: entropy of a coin launch: 𝐻 𝑥 = −𝑝 ℎ𝑒𝑎𝑑 log2𝑝 ℎ𝑒𝑎𝑑 − 𝑝 𝑡𝑎𝑖𝑙 log2𝑝 𝑡𝑎𝑖𝑙 = −
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• The Cross-Entropy H of an event x with probability ditribution P(x), but relative to a differente sample z with 
probability distribution Q(z), is defined as: 𝐻 𝑥 = σ𝑥𝑃 𝑥 log2𝑄(𝑧)

• D is a classifier 𝑋 → 0, 1 that tries to distinguish between:
• a sample from the data distribution (D(x) = 1, for x ∼ pdata) 
• a sample from the model distribution (D(G(z)) = 0, for z ∼ pnoise)

• G is a generator 𝑍 → 𝑋 trained to produce samples G(z)   for 𝑧 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒 that are difficult for D to distinguish from 
data.



GAN Value Function (1)

• Consider the value function: 𝑉(𝐷, 𝐺) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 [log2 𝐷 𝑥 ] + 𝐸𝑧∼𝑝𝑛𝑜𝑖𝑠𝑒 [log2(1 − 𝐷(𝐺(𝑧)))]

• We want to: 
• for fixed G, find D which maximizes V(D, G)
• for fixed D, find G which minimizes V(D, G)

𝐷∗ , 𝐺∗ = max
𝐷

min
𝐺

𝑉(𝐷, 𝐺)

• In other words, we are looking for the saddle point:

• An “optimal” discriminator is :

𝐷𝐺
∗ 𝑥 =

𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝐺 (𝑥)



GAN Value Function (2) 

• The DKL Kullback-Leibler divergence is defined as:  𝐷𝐾𝐿 (𝑃||𝑄) = 𝐸𝑥 log2
𝑃 𝑥

𝑄 𝑥

• Using the optimal discriminator 𝐷𝐺
∗ 𝑥 we have:

𝑉 𝐷, 𝐺 = 𝐷𝐾𝐿 𝑝𝑑𝑎𝑡𝑎,
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝐺 (𝑥)

2
+ 𝐷𝐾𝐿 𝑝𝐺 ,

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝐺 (𝑥)

2
= 𝐷𝐽𝑆𝐷 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑝𝐺 (𝑥) − log2(4)

𝐷𝐺
∗ 𝑥 =

𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝐺 (𝑥)

2×Jensen-Shannon Divergence (JSD)
notice the difference



The GAN Training Algorithm

• Sample minibatch of m training points x (1) , x (2) , . . . , x (m) from D

• Sample minibatch of m noise vectors z (1) , z (2) , . . . , z (m) from pz

• Update the discriminator parameters ϕ by stochastic gradient ascent:

∇𝜙𝑉 𝐺𝜃 , 𝐷𝜙 =
1

𝑚
∇𝜙෍

𝑖=1

𝑚

[log𝐷𝜙 (𝒙 𝑖 ) + log(1 − 𝐷𝜙 (𝐺𝜃 (𝒛
(𝑖) ))) ]

• Update the generator parameters θ by stochastic gradient descent:

∇𝜃𝑉 𝐺𝜃 , 𝐷𝜙 =
1

𝑚
∇𝜃 σ𝑖=1

𝑚 log(1 − 𝐷𝜙 (𝐺𝜃 (𝒛
(𝑖) )))

• Repeat for fixed number of epochs



GAN Gradient Calculation

• Assuming D and G are neural networks parameterized by θD and θG , backpropagation 
can be used to optimize D’s and G’s objectives alternatively until convergence. 



GANs Collapse

• GANs are notorious for suffering from mode collapse 
• Intuitively, this refers to the phenomena where the generator of a GAN collapses to one 

or few samples (dubbed as “modes”)
• There is not a general solution but just empirical-driven methods (Q-GAN may have it)

• Example: the target distribution is a mixture of Gaussians

• The generator distribution keeps oscillating between different modes



Demo Classical GAN

Demo Classical GAN

https://poloclub.github.io/ganlab/


Quantum Computing Short Introduction

•Quantum Logic, Gates and Circuits

•Quantum Algorithms

•Demo Pennylane Quantum GAN

•Demo Qiskit Quantum GAN

Go to Q.C. Intro



Quantum GAN

• Quantum GANs are the transposition of the GAN model on quantum computing

• Generalizing their framework to the quantum settings:

• classical data →   density matrix  

• Generator → unitary operator on a quantum circuit U that outputs the quantum state ρ:

• Discriminator → positive operator T that takes both true data σ and fake data ρ in input and
outputs the probability the data being true:

• The Q-GAN must solve the “minimax game”: 

from the initial state ρ0



• To evaluate the fidelity of the ρ density matrix respect to σ the usage of Helstrom
measurement operator T = P+ (σ- ρ) is not a good choice since it may lead to oscillation

• Niu et alii proposed to leverage a specific feature of Quantum Computing that is the 
entanglement: rather than evaluating either fake or true data individually the propsed
discriminator perform a measurement on the joint system of the true data σ and the 
generated data ρ(ϴg)

• The «entangled» fidelity is:

Convergence of Quantum GAN

EQ-GAN architecture:
• the generator varies ϴg to fool the discriminator; 
• the discriminator varies ϴd to distinguish the state;
• the global optimum of the EQ-GAN occurs when ρ(ϴg) = σ



Entangling Q-GAN

Instead simply swapping ρ and σ, let’s take U such that: 

Given this architecture the unitary U operator must be 
implemented in order to evaluate :

So we have: 



Entangling Q-GAN Circuit

θ1, θ2, …, θ5 are the rotation parameters that are randomly
set and then modified by the learning algorithm

View the circuit in the IBM composer

https://quantum-computing.ibm.com/composer/files/a11eaed330b5049c57e18f246bc1585d75662ef7745ab45deebffe33d7d66a25


Entangling Q-GAN Results

Minimum error in state fidelity → (1-state fidelity)



Q-GAN in Physics

• Dual-Parameterized Quantum Circuit GAN Model in High Energy Physics

Su Yeon Chang, Steven Herbert, Sofia Vallecorsa, Elías F. Combarro, Ross Duncan

• Quantum Generative Adversarial Networks in a Continuous-Variable

Architecture to Simulate High Energy Physics Detectors

Su Yeon Chang, Sofia Vallecorsa, Elías F. Combarro, Federico Carminati

• Generative Adversarial Networks for LHCb Fast Simulation

Fedor Ratnikov

Q-GAN Version 



Demo Classical GAN 

Demo Quantum GAN

https://pennylane.ai/qml/demos/tutorial_QGAN.html#sphx-glr-demos-tutorial-qgan-py
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Questions & Answers

Q&A



Thanks for your attention!



Classical vs Quantum Logic



Quantum Computer Hardware?



IBM Osprey Chip



The basis of Quantum Computing

The basis of Quantum Computation is the Qubit:
a 2-level Quantum Mechanics system



What does Quantum Computing rely on?

Qubits can be stacked together:



Entanglement

Entangled State

Two entangled states
(particles, photons, 
macroscopic states …) 
show a deep 
correlation even if
separeted.

A B

|0 > |1> |0 > |1>

50% 50% 50% 50%

Entangled states «spooky» action at a distance:

Non-entangled states:

A B

|0 > |1> |0 > |1>

50% 50%

100%100%



Important Qubit Gates

“bit flip”

“phase flip”

“bit flip” is just the classical not gate
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not a straightforward meaning



Important Qubit Unitaries

Hadamard gate:

Jacques Hadamard 1865-1963



Quantum Circuit Elements

single qubit rotations

two qubit rotations

controlled-NOT
control

target

control

target
controlled-U

measurement in the                 basis 



Quantum Composer

Demo Composer

https://quantum-computing.ibm.com/composer/files/new


Quantum GAN

Back to Quantum GAN



Appendix EQ-GAN

Appendix EQ-GAN



Helstrom Measurament



Swap Test

• The swap test is a procedure in quantum computation that is used to check how much 
two quantum states differ, appearing first in the work of Barenco et al.

• It takes two input states and outputs 1 with probability
1

2
−

1

2
< 𝜓 𝜙 > |2



Swap Test



Appendix Quantum Computing

Appendix Q.C.



Main Algorithms as «Lego Bricks»

• Teleportation
• Superdende Coding Quantum Cryptography

• Grover Search Speed-up

• Quantum Phase
Estimation (QPE)

Linear Algebra / Shor

• Deutsch
• Deutsch-Jozsa

«Oracle» Problems
(guess the function)



This would be a procedure for extracting information 
from without effecting the state

Quantum Teleportation

Alice wants to send her qubit to Bob

• Alice and Bob share an entangled pair of qubits
• Alice makes a measure on her state and send him 

classical bits of information about the outcome
• Then Bob would have information about        as well

Alice Bobclassical communication

She does not know the wave function of her qubit



Quantum Teleportation

So we have three qubits whose wave function is:

Alice does not know the wave function

qubit 1 qubit 2 and qubit 3

Alice shares with Bob an entangled state

ALICE BOB



Quantum Teleportation

Quantum Circuit used to simulate Teleportation:

Bob reads them and if

00 → does nothing
01 → applies  X gate
10 → applies  Z gate
11 → applies ZX gate

Alice makes a measure on q0 and q1 and send the bits to Bob

then q2 q0



Quantum Teleportation

ESA observatory breaks world quantum teleportation record

An international research team using

ESA’s Optical Ground Station in the

Canary Islands has set a new distance

world record in ‘quantum teleportation’ by

reproducing the characteristics of a light
particle across 143 km of open air.

https://www.esa.int/Enabling_Support/Space_Engineering_Technology/ESA_observatory_breaks_world_quantum_teleportation_record


Quantum Teleportation

Demo Teleportation

https://qiskit.org/textbook/ch-algorithms/teleportation.html


The Frontier: CNN vs Quantum Machine Learning

• Convolutional neural networks (ConvNets or CNNs) are a category of neural
networks1 that have proven to be very effective in tasks such as image
recognition and classification

• Convolution works by extracting a feature map from a source image:

1https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/


Filtering Pooling

Alternating
Blocks

MPLs

Flattening
• Convolutional Blocks:

• Filtering

• Pooling

• Alternating Convolutional Blocks

• Flattening

• Multi Perceptron Layers (MPLs)

CNN Schema



CNN ON MNIST

How a convolutional network classifies handwritten numbers:



CNN AT WORK

Demo CNN

https://adamharley.com/nn_vis/cnn/2d.html


The Frontier: Quantum Machine Learning

Quanvolutional Neural 
Networks
Author: Andrea Mari — Posted: 24 March 
2020. Last updated: 15 January 2021

Originally introduced by Henderson et alii 
in 2019

Pennylane Quanvolution

https://pennylane.ai/qml/demos/tutorial_quanvolution.html


Pennylane Quanvolution

Demo Quanvolution

https://pennylane.ai/qml/demos/tutorial_quanvolution.html


Last but not Least…

Let’s ask ChatGPT to generate 
qiskit code to demonstrate
teleportation protocol…



ChatGPT –> Qiskit

Demo ChatGPT

https://chat.openai.com/chat


More Algorithms

More Algorithms



«Oracle» Problems: Deutsch Algorithm

Given one bit function:

Four such function, it may be:

“constant”

“balanced”

instance: function f is unknown
problem: determine whether function is constant or balanced

Deutsch’s Problem

David Deutsch 1985



Quantum Deutsch

f constant f=0

f constant f=1

f balanced f={0,1}

f balanced f={1,0}

Uf



Deutsch Algorithm

Demo Deutsch

https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html


Searching speed-up: Grover Algorithm

n qubit

1qubit

Suppose we have a black box:

with the property:

Problem: find         with as few queries as possible

Solution: identify the item in “only”                queries!



Grover Iterate Block

n qubits

Grover’s iterate

Lov Grover 1996



Grover Algorithm

Demo Grover

https://qiskit.org/textbook/ch-algorithms/grover.html


Quantum Phase Estimation Algorithm

We wanto to estimate a the phase ω given the quantum state 
−
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
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Note that in binary we can express  as:

321 xx.x2 =

 1nn1n321
1n xx.xxxx2

+−

− =

321 xxx.0=

If ω=0.x1 then we can do the following:
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Quantum Phase Estimation Algorithm

It can be shown that:

So if ω=0.x1x2 then we can do the following:

H 2x

2

1e0 )xx.0(i2 21+

2

1e0 )x.0(i2 2+

H 1x
1

2R
−



Quantum Phase Estimation Algorithm

If ω=0.x1x2x3 then we can do the following:

H 3x

2

1e0 )xx.0(i2 32+

2

1e0 )x.0(i2 3+

H 2x1
2R
−

2

1e0 )xxx.0(i2 321+
H 1x1

2R
−1

3R
−



Quantum Phase Estimation Algorithm

Demo QPE

https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html


Step 1. Choose a random positive integer m. Use the polynomial time Euclidean algorithm to compute the greatest
common divisor gcd (m, N ) of m and N. If the greatest common divisor gcd (m, N) = 1, then we have found a non-
trivial factor of N , and we are done. If, on the other hand, gcd (m, N ) ≠ 1, then proceed to STEP 2.

Step 2. Use QUANTUM PHASE ESTIMATION to determine the unknown period P of the function

Step 3. If P is an odd integer then goto Step 1. If P is even then goto Step 4.

Step 4. Since P is even, we have: (mP/2 + 1) (mP/2 – 1) = mP – 1 = 0 mod N
If mP/2 + 1 = 0 mod N then goto Step 1. else goto Step 5.

Step 5. Use the Euclidean algorithm to compute d = gcd(mP/2 – 1, N). Since mP/2 + 1 ≠ 0 mod N it can easily be shown
that d is a non-trivial factor of N. Exit with the answer d.

Shor’s Algorithm

A lecture on Shor’s quantum factoring algorithm
Samuel J. Lomonaco Jr.

Peter Shor 1994

https://arxiv.org/pdf/quant-ph/0010034.pdf


Shor’s Algorithm

Demo Shor

https://qiskit.org/textbook/ch-algorithms/shor.html


The Very End!
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