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Alberto Arzenton Università degli Studi di Siena 1 / 27



Introduction Deep learning approach Results Conclusions References

Overview

1 Introduction
Monte Carlo voxel-based dosimetry
The MIRD schema

2 Deep learning approach
Why deep learning?
Workflow
Alternative workflow

3 Results
Statistical evaluation
Comparison with Monte Carlo

4 Conclusions
Research goals
Statistical review
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Monte Carlo voxel-based dosimetry

The Monte Carlo (MC) method, combined with 3D imaging, is a powerful tool to
perform dosimetric analyses in nuclear medicine.

▶ Computed Tomography (CT) can provide anatomical
information to the MC software, which can create a vox-
elized volume resembling the patient’s body.

▶ Positron Emission Tomography (PET) and Single
Photon Emission Computed Tomography (SPECT)
can provide functional information about the medical ra-
dioisotope distribution.
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Monte Carlo voxel-based dosimetry

Radiation can be simulated sampling the activity distribution and
the absorbed dose can be scored at voxel level, obtaining a dose
map.

Monte Carlo codes

Common MC toolkits used for radiation tracking in medical
applications are MCNP, Geant4, PARTRAC and FLUKA.

The number of MC events required to have enough statistics is very
high (≥ 107) and time-consuming.
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The MIRD schema

An algorithm to speed up the process was
proposed by the U.S. Committee on Medi-
cal Internal Radiation Dose (MIRD) [Bolch
et al. (2009)].

The dose-rate in a target volume rt from a
series of sources rs can be computed starting
from the activity A (PET, SPECT) and a
convolution kernel S (sized ad lib):

Ḋ(rt , t) =
∑
s

A(rs , t) S(rt ← rs)

The S-values, representing the mean ab-
sorbed dose in rt per activity unit in rs , can
be simulated by MC once for each radioiso-
tope and tissue.
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Why deep learning?

S-values are tissue-specific, therefore a convolution using different kernels will not be
fully reliable next to the organ boundaries. Thus, an innovative technique must be:

▶ faster than direct MC;

▶ more precise than S-values.

The AI state of the art suggested a possible improvement using Deep Neural Network
(DNN) algorithms to build mixed kernels considering more than one tissue [Akha-
vanallaf et al. (2021)].
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Workflow

Each voxel has its specific S-value kernel, generated by the DNN using the CT.

Alberto Arzenton Università degli Studi di Siena 9 / 27



Introduction Deep learning approach Results Conclusions References

Workflow
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Workflow

The ResNET architecture, implemented on the TensorFlow platform, is suitable for
internal dosimetry.
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Alternative workflow

DNNs can also be used to directly predict the whole dose map [Lee et al. (2019)];
however, the training time grows dramatically (∼ 103), like the required dataset.
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Statistical evaluation

How can we evaluate the goodness of a DNN approach? First of all, a proper ground
truth has to be chosen.

Ground truth

In internal dosimetry, the ground truth is usually chosen as the dose map produced
by a direct MC simulation with a very high number of events.

N.B.
The ground truth is fundamental for both training and final evaluation.
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Statistical evaluation

In medical statistics, a common method to compare the results of two different assays is
the Bland-Altman plot (B&A), which studies the differences between the measures
against the magnitude of the observable [Giavarina (2015)].

▶ Differences can be dimensional or per-
centages.

▶ The magnitude should be expressed as
the mean of the two measures.

▶ An average bias can be identified with
the mean difference d̄ , although it can
actually change with the magnitude.

Alberto Arzenton Università degli Studi di Siena 15 / 27



Introduction Deep learning approach Results Conclusions References

Statistical evaluation

If the differences are normally distributed, their 95% Confidence Interval (CI) will be
defined by d̄ ± 1.96s, where s is the standard deviation.
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Comparison with Monte Carlo

(a) Density image of the lung region taken from a CT. (b) Direct MC. (c) DNN.

▶ The DNN produced 64 × 64 × 64 mixed kernels for the β+ decay of 18F-FDG,
which were compared to the ground truth, i.e. direct MC.

▶ The kernel size, 19.2 cm, was bigger than the range of the 511 keV annihilation
γ-rays (∼ 7 cm).

▶ The training dataset included 12100 frames taken from just 24 CT images.
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Comparison with Monte Carlo

▶ The distribution of the percentage differences (here Mean Relative Absolute
Error, MRAE), assessed before and after the convolution, looks coarsely normal.

▶ DNN shows a good correlation with MC kernels.
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Comparison with Monte Carlo

▶ DNN dose maps obtained by PET
convolution were compared to MC,
but also to single and multiple S-
value approaches (SSV and MSV).

▶ SSV is very different and probably
not worth the comparison.

▶ The DNN execution time was
over 103 times shorter than MC.
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Comparison with Monte Carlo

▶ In B&A analysis, the smallest bias and CI were given by DNN.

▶ The points out of the CI were identified as negligible boundary effects.

▶ Instead of the mean, MC was used in the abscissa: in literature this practice is
marked as misleading, as it may create itself a dependence from the magnitude.
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Comparison with Monte Carlo

In fact, the correlation between differences and
magnitude can completely change depending on
which method is chosen as the standard [Bland and
Altman (1995)].
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Research goals

In general, we can say that the DNN mixed kernels:

▶ bring an improvement towards the MC gold standard, with respect to MSV;

▶ require < 0.1% of MC execution time;

▶ need a much smaller training dataset from medical imaging than the DNN ap-
proach without kernels, as well as a shorter training time;

▶ imply a training which is only isotope-specific and not prone to any bias caused
by the radiopharmaceutical biodistribution.
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Statistical review

In general, the authors made quite good use of B&A analysis.

✓ DNN was correctly proved to be better than MSV.

✓ The data beyond the CI were verified to be negligible.

✗ Not putting the mean in the abscissa prevented from understanding a possible
difference/magnitude relation.

Finally, one may expect the DNN approach without kernels to be more precise for long-
range radiation, but:

▶ such a comparison is still missing in literature;

▶ the authors who used that method did not perform B&A analysis.
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Thank you for your kind attention!
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