Statistics for Neutrino Oscillations Physics *The T2K Experiment*

Statistics Seminar Ph.D. cycle XXXVII

> Matteo Feltre 18/05/23

Introduction

1. Neutrino Physics

2. T2K Experiment

3. Statistical Methods

4. Results

Introduction to Neutrinos

Nobel Prize 2015

Neutrinos produced in weak processes v_{α} are linear combination of mass eigenstates v_i

Neutrinos produced in weak processes v_{α} are	
linear combination of mass eigenstates v_i	\n $ \nu(t)\rangle = \sum_i U_{\alpha i}^* e^{-iE_i t} \nu_i\rangle = \sum_i U_{\alpha i}^* e^{-iE_i t} \sum_{\beta} U_{\beta i} \nu_{\beta}\rangle$ \n
Neutrinos are observed to not preserve their flavor during propagation!	\n $P(\nu_{\alpha} \to \nu_{\beta}) = \langle \nu_{\beta} \nu(t) \rangle ^2 = \left \sum_i U_{\beta i} U_{\alpha i}^* e^{-iE_i t} \right ^2$ \n

Probability of oscillation is given by PMNS matrix

The T2K Experiment

Main goals and results

Far Detectors:

Intense high purity muon (anti)neutrino beam from J-PARC to Super-Kamiokande

 $\bm{\theta_{23}}$, Δm^2_{23}

 θ_{13} , δ_{CP}

Neutrino Oscillations at T2K

appearance channel

CP odd phase
\n
$$
P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})
$$

\nif sin $\delta_{CP} \neq 0$

Matter Effect $N. O. \rightarrow v_e$ appearance enhanced $I. O. \rightarrow \overline{\nu}_e$ appearance enhanced

Up to $\pm 30\%$ **effect Up to** $\pm 10\%$ **effect**

T2K Analysis Strategy

Parameter Estimation

Inference from data aims mainly to **parameter estimation** and **interval estimation**

A "best guess" and a "range" supported by data

- **Frequentist Approach**
- It requires a full specification of the probability model $P(y|H)$
	- Parameters and hypotheses may be unknown, but they are fixed

An **approximate result** can be found by applying the Likelihood to only obtained data

• **Bayesian Approach**

Unknown quantities contained in a probability model for the observed data are treated as random variables

Crucial points:

- 1. Prior Specification
- 2. Integration over large number of dimensions

Near Detector Physics

Neutrino interacts with Carbon and Water mainly through

Building a Likelihood Function – *Near Detector*

Data collected by Near Detector is binned as a function of two variables of detected muon:

• Momentum p_{μ}

Building a Likelihood Function – *Near Detector*

Data collected by Near Detector is binned as a function two variables of detected muon:

- Momentum p_{μ}
- Angle w.r.t. beam direction cos θ_{μ}

$$
L_{total} = L_{stat} \times L_{stat}^{MC} \times L_{syst}
$$

Systematic uncertainties

$$
-2 \ln L_{syst} = (\vec{x} - \vec{\mu})^T V^{-1} (\vec{x} - \vec{\mu})
$$

Maximum Likelihood estimators for $\boldsymbol{\theta}$

Near Detector Results

12

Near Detector Results

Building a Likelihood Function – *Far Detector*

Particle Identification (PID)

Hypothesis Testing

• **Frequentist Approach**

A **p-value** is calculated

A statistic t is defined **COV and A** Quantification of agreement between data and the hypothesis

Probability that a model with a test statistic equal to or larger than observed data is found

 $p =$ t_{obs} ∞ $f(t|H_0)dt$

How many toy datasets give as a result…

 $-2 \ln L$ ^{Toy} $\geq (-2 \ln L)^{Data}_{min}$

An a priori criteria of $p > 0.05$ is needed

Toys datasets are created by varying uncertainties

p-value is not the probability for the Hypothesis!

• **Bayesian Approach**

Bayes Factor

Consider data y arisen under two Hypotheses H_1 , H_2 with probability density $p(\mathbf{y}|H_1)$ and $p(\mathbf{y}|H_2)$ $B_{12} = \frac{p}{r}$ $p(y|H_1)$ $p(y|H_2)$ = $\int p(\theta_1|H_1)p(\mathbf{y}|\theta_1, H_1)d\theta_1$ $\int p(\theta_2|H_2)p(\mathbf{y}|\theta_2,H_2)d\theta_2$ = $p(H_1|\mathbf{y})$ $p(H_2|\boldsymbol{y}$ × $\pi(H_2)$ $\pi(H_1)$ Bayes Factor ∝ Posterior Odds Prior odds Marginalized Likelihoods

In case of test against null hypothesis H_0 :

Interpretation

Summary of evidence provided by data

Kass-Raftery classification

Oscillation Analysis

From ND and FD analysis to…

Three-flavour oscillation analysis Predictions

No experiment is sensitive to all mixing parameters T2K relies on external constraints for:

Bayesian Results

Sampling of posterior distribution through MCMC \longrightarrow Simultaneous ND and FD selections

External constraints on systematic uncertainties parameters \longrightarrow Multivariate gaussian

1. Priors distribution:

Different based on how parameters are obtained

2. Credible regions:

Extracted from lower dimensional **marginalised** posterior distributions

 $p(\boldsymbol{\theta}|\mathbf{y}, I) =$ $p(\mathbf{y} | \boldsymbol{\theta}, I) \pi(\boldsymbol{\theta} | I)$ $p(\mathbf{y}|I)$ **Marginalization:** $p(\theta_i | \mathbf{y}) =$ $\theta-i$ $p(\boldsymbol{\theta}|\boldsymbol{y})d\boldsymbol{\theta}_{-i}$ **Reminder:**

Bayesian Results

Frequentist Results

Results are obtained by using the marginal likelihood

Binned Poisson likelihood for

- $L_{marg}(\theta) = \int d\eta ~ p(\eta) L(\theta, \eta) ~ \rightarrow$ Parameters of interest θ
	- Nuisance parameters η

• **Confidence Interval**

Feldman-Cousins (FC) method

Conclusions

T2K has measured:

- Oscillation parameters Δm^2_{32} , sin² θ_{13} , sin² θ_{23} , δ_{CP}
- Jarlskog invariant
- Mass Ordering

Next Steps

1. Results are limited by statistics **Cometage 20 Figure 2016** in shutdown for **Upgrade**

The Upgrade of ND is designed to:

- Decrease **systematic uncertainties**
- Increase **flux**

Change at FD:

- **Gadolinium** doping of pure water
- 2. Joint Analysis with **NOvA**

Thanks for your attention!

Bibliography

- Abe, K., et al. "Measurements of neutrino oscillation parameters from the T2K experiment using \$3.6\times10^{21} \$ protons on target." *arXiv preprint arXiv:2303.03222* (2023).
- Abe, Ko, et al. "Improved constraints on neutrino mixing from the T2K experiment with 3.13x 10 21 protons on target." *Physical Review D* 103.11 (2021): 112008.
- Jiang, M., et al. "Atmospheric neutrino oscillation analysis with improved event reconstruction in Super-Kamiokande IV." *Progress of Theoretical and Experimental Physics* 2019.5 (2019): 053F01.

Introduction to Neutrinos

According to Standard Model, neutrinos are 3 of the fundamental particles

- **Neutral**
- **Massless**

Pauli

predicts

the

Neutrino

1930

They can be observed through the products of their interactions

Adapted "The Growing Excitement of Neutrino Physics" by APS

- ★ 1930: On-paper appearance as "desperate" remedy by W. Pauli
- \star 1956: Anti-_{Ve} first experimentally discovered by Reines & Cowan
- \star 1962: v_u existence confirmed by Lederman et al
- ★ 1986: Existence of v_r was established (see Gary Feldman's talk)
- \star 1998: Atmospheric v oscillations discovered by Super-K
- \star 2000: v_{\star} first evidence reported by DONUT experiment
- \star 2001: Solar v oscillations detected by SNO (KamLAND 2002)
- ★ 2011: $v_u \rightarrow v_\tau$ transitions observed by OPERA
- \star 2011-13: $v_u \rightarrow v_e$ observed by T2K and anti- $v_{e} \rightarrow$ anti- v_e by Daya Bay

Reines

& Cowan

discover

(anti)neutrino

1956

muon

neutrinos

discovery anomaly

1962 1964

Solar

neutrino

1980

- ★ 2015: Nobel prize for ν oscillations, Breakthrough prize (2016)
- ★ 2018: T2K hints on leptonic CP violation

Fermi's

theory

of weak

interactions

 $~25$ years

Standard Model of Elementary Particles

Near Detector Results

Covariance Matrix

- Q^2 parameters have a strong anti-correlation with flux parameters
- Strong anti correlation reduces uncertainty on the prediction at FD

Data Taking

Building a Likelihood Function – *Far Detector*

Event reconstruction in Super-K uses both **charge** and **timing** information from **hits** in the PMTs

Observing charge t_i

← Cherenkov radiation

An event topology hypothesis Γ **(e.g., single-ring e-like)** is considered in a likelihood fit, along with its kinematic parameters θ :

 $P_j(\text{unhit}|\Gamma,\theta) \times$

1. Vertex position

ෑ

hit

• **Charge**

• **Hit time**

i

- 2. Particle creation times
- 3. Angles of direction
- 4. Particles momenta

Recorded data (each PMT):

 $L(\Gamma, \theta) = | \ |$

j

 $1-P_i(\text{unhit}|\Gamma, \theta)] \times f_q(q_i|\Gamma, \theta) f_t(t_i|\Gamma, \theta)$

unhit

Depends on Γ:

- Momentum p
- Expected hit time $\mathfrak{t}_{i}^{\epsilon}$ exp

$$
f_t(t_i|t_i^{exp}, \Gamma, p, \mu_i)
$$

Near Detector Physics

Flux Cross Section

Results and Comparison with other experiments

• **General agreement**

 $\times 10^{-3}$

 3.0

 $T2K$ run $1-10$

 $-$ NO_vA 2020

Super-K 2018

-- IceCube 201

MINOS+2020

+ Best fits

Bayesian Results

Frequentist Results

Results are obtained by using the marginal likelihood

 $L_{marg}(\theta) = \int d\eta p(\eta, \theta)$ Binned Poisson likelihood for

- Parameters of interest θ
- Nuisance parameters η

• **Confidence Interval**

Feldman-Cousins (FC) method

