Statistics for Neutrino Oscillations Physics The T2K Experiment

Statistics Seminar Ph.D. cycle XXXVII

> Matteo Feltre 18/05/23

Introduction

1. Neutrino Physics

2. T2K Experiment

3. Statistical Methods

4. Results

Introduction to Neutrinos

Nobel Prize 2015

Neutrinos produced in weak processes v_{α} are linear combination of mass eigenstates v_i

Neutrinos produced in weak processes
$$\nu_{\alpha}$$
 are
linear combination of mass eigenstates ν_i
Neutrinos are observed to not preserve their flavor during propagation!
Nobel Prize 2015
 $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |\langle \nu_{\beta} | \nu(t) \rangle|^2 = \left| \sum_{i} U_{\beta i}^* U_{\alpha i}^* e^{-iE_i t} \right|^2$

Probability of oscillation is given by PMNS matrix

The T2K Experiment

Intense high purity muon (anti)neutrino beam from J-PARC to Super-Kamiokande

Super-K

295km

Super-K

Neutrino Oscillations at T2K

v_e appearance channel

CP odd phase

$$P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})$$

if $\sin \delta_{CP} \neq 0$

Up to $\pm 30\%$ effect

Matter Effect $N. O. \rightarrow v_e$ appearance enhanced $I. O. \rightarrow \overline{v_e}$ appearance enhanced

Up to $\pm 10\%$ effect

T2K Analysis Strategy

Parameter Estimation

Inference from data aims mainly to parameter estimation and interval estimation

A "best guess" and a "range" supported by data

- Frequentist Approach
- It requires a full specification of the probability model P(y|H)
 - Parameters and hypotheses may be unknown, but they are fixed

Inferential procedure are evaluated under the (hypothetical) repeated sampling
of the data

An **approximate result** can be found by applying the Likelihood to only obtained data

Bayesian Approach

Unknown quantities contained in a probability model for the observed data are treated as random variables

Crucial points:

- 1. Prior Specification
- 2. Integration over large number of dimensions

Near Detector Physics

Neutrino interacts with Carbon and Water mainly through

Flux

- Data-driven simulation (NA61)
- High Statistic monitoring (INGRID)

Cross Section

Reactions that mimic CCQE

- Scattering into a correlated pair of nucleons
- Resonant production of pion(s)

*CC*1π

TPC3

Building a Likelihood Function – Near Detector

Data collected by Near Detector is binned as a function of two variables of detected muon:

• Momentum p_{μ}

Building a Likelihood Function – Near Detector

Data collected by Near Detector is binned as a function two variables of detected muon:

- Momentum p_{μ}
- Angle w.r.t. beam direction $\cos \theta_{\mu}$

$$L_{total} = L_{stat} \times L_{stat}^{MC} \times L_{syst}$$

Systematic uncertainties

$$-2\ln L_{syst} = (\vec{x} - \vec{\mu})^T V^{-1} (\vec{x} - \vec{\mu})$$

Maximum Likelihood estimators for $oldsymbol{ heta}$

Near Detector Results

12

Near Detector Results

Building a Likelihood Function – Far Detector

Particle Identification (PID)

Hypothesis Testing

A statistic *t* is defined

- Frequentist Approach
- A **p-value** is calculated

Quantification of agreement between data and the hypothesis

Probability that a model with a test statistic equal to or larger than observed data is found

$$p = \int_{t_{obs}}^{\infty} f(t|H_0) dt$$

How many toy datasets give as a result...

 $(-2\ln L)_{min}^{Toy} \ge (-2\ln L)_{min}^{Data}$

• An a priori criteria of p > 0.05 is needed

Toys datasets are created by varying uncertainties

p-value is not the probability for the Hypothesis!

Likeli contril	<i>p</i> -value		
v in v mode	07	FGD1	0.93
v_{μ} in v-mode	On	FGD2	0.93
$\overline{\mathbf{v}}$ in $\overline{\mathbf{v}}$ mode	07	FGD1	0.20
v_{μ} in v-mode	On	FGD2	0.15
	0.7	FGD1	0.54
v_{μ} in v-mode	01	FGD2	0.45
All sar	0.82		
Neutrin	0.46		
ND de	0.06		
Cross s	0.01		
All sample	0.74		

Bayesian Approach

Bayes Factor

Consider data \mathbf{y} arisen under two Hypotheses H_1, H_2 with probability density $p(\mathbf{y}|H_1)$ and $p(\mathbf{y}|H_2)$ $B_{12} = \frac{p(\mathbf{y}|H_1)}{p(\mathbf{y}|H_2)} = \frac{\int p(\theta_1|H_1)p(\mathbf{y}|\theta_1, H_1)d\theta_1}{\int p(\theta_2|H_2)p(\mathbf{y}|\theta_2, H_2)d\theta_2} = \frac{p(H_1|\mathbf{y})}{p(H_2|\mathbf{y})} \times \frac{\pi(H_2)}{\pi(H_1)}$ Marginalized Likelihoods
Bayes Factor $\propto \frac{\text{Posterior Odds}}{\text{Prior odds}}$

In case of test against null hypothesis H_0 :

Interpretation Summary of evidence provided by data

$2\log_e(B_{10})$	(B_{10})	Evidence against H_0
0 to 2	1 to 3	Not worth more than a bare mention
2 to 6	3 to 20	Positive
6 to 10	20 to 150	Strong
>10	>150	Very strong

Kass-Raftery classification

Oscillation Analysis

From ND and FD analysis to...

Three-flavour oscillation analysis

Predictions

No experiment is sensitive to all mixing parameters T2K relies on external constraints for:

Data

318

137

94

16

14

Bayesian Results

External constraints on systematic uncertainties parameters \longrightarrow Multivariate gaussian

1. Priors distribution:

Different based on how parameters are obtained

Reminder: $p(\theta|\mathbf{y}, I) = \frac{p(\mathbf{y}|\theta, I)\pi(\theta|I)}{p(\mathbf{y}|I)}$ **Marginalization:** $p(\theta_i|\mathbf{y}) = \int_{\theta-i} p(\theta|\mathbf{y}) d\theta_{-i}$

2. Credible regions:

Extracted from lower dimensional marginalised posterior distributions

Bayesian Results

Frequentist Results

٠

Results are obtained by using the marginal likelihood

Binned Poisson likelihood for

- $L_{marg}(\theta) = \int d\eta \ p(\eta) L(\theta, \eta) \rightarrow \bullet$ Parameters of interest θ
 - Nuisance parameters η ٠

Conclusions

T2K has measured:

- Oscillation parameters Δm^2_{32} , $\sin^2 heta_{13}$, $\sin^2 heta_{23}$, δ_{CP}
- Jarlskog invariant
- Mass Ordering

Next Steps

1. Results are limited by **statistics** — Currently in shutdown for <u>Upgrade</u>

The Upgrade of ND is designed to:

- Decrease systematic uncertainties
- Increase **flux**

Change at FD:

- Gadolinium doping of pure water
- 2. Joint Analysis with NOvA

Thanks for your attention!

Bibliography

- Abe, K., et al. "Measurements of neutrino oscillation parameters from the T2K experiment using \$3.6\times10^{21} \$
 protons on target." arXiv preprint arXiv:2303.03222 (2023).
- Abe, Ko, et al. "Improved constraints on neutrino mixing from the T2K experiment with 3.13× 10 21 protons on target." *Physical Review D* 103.11 (2021): 112008.
- Jiang, M., et al. "Atmospheric neutrino oscillation analysis with improved event reconstruction in Super-Kamiokande IV." *Progress of Theoretical and Experimental Physics* 2019.5 (2019): 053F01.

Introduction to Neutrinos

According to Standard Model, neutrinos are 3 of the fundamental particles

- Neutral
- Massless

Pauli

predicts

the

Neutrino

1930

They can be observed through the products of their interactions

Solar

neutrino

1980

muon

neutrinos

discovery anomaly

1962 1964

Adapted "The Growing Excitement of Neutrino Physics " by APS

- \star 1930: On-paper appearance as "desperate" remedy by W. Pauli
- $\bigstar\,$ 1956: Anti- $_{\nu_{e}}$ first experimentally discovered by Reines & Cowan
- ★ 1962: v_{μ} existence confirmed by Lederman *et al*
- + 1986: Existence of v_r was established (see Gary Feldman's talk)
- \star 1998: Atmospheric ν oscillations discovered by Super-K
- ★ 2000: v_{τ} first evidence reported by DONUT experiment
- \star 2001: Solar v oscillations detected by SNO (KamLAND 2002)
- ★ 2011: v_{μ} → v_{τ} transitions observed by OPERA
- ★ 2011-13: $v_{\mu} \rightarrow v_{e}$ observed by T2K and *anti-v_e anti-v*_e by Daya Bay

Reines

& Cowan

discover

(anti)neutrino

1956

- \star 2015: Nobel prize for v oscillations, Breakthrough prize (2016)
- ★ 2018: T2K hints on leptonic CP violation

Fermi's

theory

of weak

interactions

~25 years

T2K hints on leptonic CP violation

Standard Model of Elementary Particles

Near Detector Results

Covariance Matrix

- Q^2 parameters have a strong anti-correlation with flux parameters
- Strong anti correlation reduces uncertainty on the prediction at FD

	$0.0 < E_v < 0.4$	$0.4 < E_{\rm v} < 0.5$	$0.5 < E_v < 0.6$	$0.6 < E_v < 0.7$	$0.7 < E_v < 1.0$	M_{Λ}^{QE}	$0.00 < Q^2 < 0.05$	$0.05 < Q^2 < 0.10$	$1.10 < Q^2 < 0.15$	$1.15 < Q^2 < 0.20$	$0.20 < Q^2 < 0.25$	$0.25 < Q^2 < 0.50$	$1.50 < Q^2 < 1.00$		-1.0
$0.0 < E_v < 0.4$	1.00	0.86	0.67	0.54	0.49	-0.16	-0.31	-0.36	-0.30	-0.17	-0.17	-0.23	-0.13		1.0
$0.4 < E_v < 0.5$	0.86	1.00	0.87	0.72	0.49	-0.20	-0.38	-0.43	-0.37	-0.21	-0.21	-0.27	-0.15	_	-0.8
$0.5 < E_v < 0.6$	0.67	0.87	1.00	0.89	0.49	-0.21	-0.45	-0.50	-0.43	-0.24	-0.24	-0.32	-0.17	_	-0.6
$0.6 < E_v < 0.7$	0.54	0.72	0.89	1.00	0.71	-0.21	-0.54	-0.59	-0.49	-0.28	-0.28	-0.38	-0.19	-	-0.4
$0.7 < E_{y} < 1.0$	0.49	0.49	0.49	0.71	1.00	-0.17	-0.52	-0.55	-0.46	-0.26	-0.26	-0.37	-0.19		-0.2
M	-0.16	-0.20	-0.21	-0.21	-0.17	1.00	0.10	-0.02	-0.14	-0.16	-0.17	-0.54	-0.62		0.2
$0.00 < Q^2 < 0.05$	-0.31	-0.38	-0.45	-0.54	-0.52	0.10	1.00	0.61	0.55	0.27	0.29	0.39	0.19	_	0.0
$0.05 < Q^2 < 0.10$	-0.36	-0.43	-0.50	-0.59	-0.55	-0.02	0.61	1.00	0.37	0.45	0.25	0.52	0.31	-	0.2
$0.10 < Q^2 < 0.15$	-0.30	-0.37	-0.43	-0.49	-0.46	-0.14	0.55	0.37	1.00	-0.13	0.55	0.44	0.38		0.4
$0.15 < Q^2 < 0.20$	-0.17	-0.21	-0.24	-0.28	-0.26	-0.16	0.27	0.45	-0.13	1.00	-0.44	0.52	0.20		0.0
$0.20 < Q^2 < 0.25$	-0.17	-0.21	-0.24	-0.28	-0.26	-0.17	0.29	0.25	0.55	-0.44	1.00	0.05	0.41	_	0.6
$0.25 < Q^2 < 0.50$	-0.23	-0.27	-0.32	-0.38	-0.37	-0.54	0.39	0.52	0.44	0.52	0.05	1.00	0.46	-	0.8
$0.50 < Q^2 < 1.00$	-0.13	-0.15	-0.17	-0.19	-0.19	-0.62	0.19	0.31	0.38	0.20	0.41	0.46	1.00		1.0

Data Taking

Building a Likelihood Function – Far Detector

Event reconstruction in Super-K uses both charge and timing information from hits in the PMTs

Cherenkov radiation

An event topology hypothesis Γ (e.g., single-ring e-like) is considered in a likelihood fit, along with its kinematic parameters θ :

Vertex position 1.

Charge

Hit time

- Particle creation times 2.
- Angles of direction 3.
- 4. Particles momenta

Recorded data (each PMT):

 $L(\Gamma,\theta) = \prod_{i} P_{j}(unhit|\Gamma,\theta) \times$ Observing charge q_i hit Depends on Γ : $\int_{I_{i}} \left[1 - P_{i}(unhit|\Gamma,\theta) \right] \times f_{q}(q_{i}|\Gamma,\theta) f_{t}(t_{i}|\Gamma,\theta)$ Momentum p $f_t(t_i|t_i^{exp}, \Gamma, p, \mu_i)$ Expected hit time t_i^{exp} Observing charge t_i Direct hit starting mid-track

Near Detector Physics

Flux

Cross Section

—	CC Inclusive	 NC Inclusive
—	CC Quasi-elastic	 $\rm CC \ 2p2h$
—	CC Resonant 1π	 CC Multi- π + DIS

Results and Comparison with other experiments

General agreement

 $\times 10^{-3}$

T2K run 1-10

- NOvA 2020

Super-K 2018

-- IceCube 201

MINOS+ 2020

Best fits

 $\Delta m^2_{32} \, [eV^2]$

3.0

Bayesian Results

Frequentist Results

Results are obtained by using the marginal likelihood

 $L_{marg}(\theta) = \int d\eta \ p(\eta, \theta)$

Binned Poisson likelihood for

- Parameters of interest θ
- Nuisance parameters η

Confidence Interval

Feldman-Cousins (FC) method

