Overview of SPAD image sensors and their scientific potential

from single-pixel configuration to mega-pixels arrays

PhD Student Marco Mattiazzi

Università di Siena

May 04, 2023

Seminar on photo-detectors for the course Experimental Techniques in High Energy Physics

Outline

• Single-photon avalanche diode (SPAD)

I. Working principle

II. Performance parameters

III.Noise sources

• SPAD arrays (up to Mpixel size)

- I. Main architectures
- II. Scaling issue

III.Recent developments

- Scientific applications
 - I. Fluorescence Lifetime Imaging (FLIM)
- Summary
- References

Operation regimes of APD in reverse bias:

- Linear mode $|V_{bias}| < |V_{breakdown}|$ the number of electron-hole pairs (EHP) generated by impact ionization are ≤ 1000 . The gain is strongly dependent on V_{bias} and temperature. Thus, it is not suitable for single photon detection
- Geiger mode |V_{bias}| > |V_{breakdown}| the electric field is > 10⁵ V/cm, such that a single photon impinging on depletion region and producing an EHP can trigger an avalanche generating a macroscopic self-sustaining current

Detection cycle (Passive Quenching)

Picture from Ref. [3]

V_B : breakdown voltage

V_E : excess bias voltage (overvoltage)

Pulse shape

V_E : excess bias voltage (overvoltage)

Main SPAD figures of merit

- Fill Factor (FF) is the ratio between the active and the pixel areas
- PDP (Photon detection probability) is the single-photon sensitivity per unit of active area

$$\mathsf{PDP}(\mathsf{V}_{\mathsf{bias}},\lambda) = \mathsf{QE}(\lambda) \times \mathsf{P}_{\mathsf{avalanche}}(\lambda)$$

where:

- QE (λ) is the EHP generation probability for incoming photon
- $P_{avalanche}(\lambda)$ is the avalanche triggering probability
- **PDE** (Photon detection efficiency)

 $PDE(V_{bias}, \lambda) = PDP \times FF$

 Timing resolution (or *jitter*) is the distribution width (e.g. FWHM) of the difference between the photon arrival time and the pulse leading-edge

Noise sources for single-pixel SPAD

- **Dark count rate (DCR)** is the main noise source and it consists mainly in EHP that are generated by thermal motion
 - **1** w.r.t V_{bias} , T
 - \downarrow lowering the pixel size
- **Afterpulsing** is due to trapped charged carriers that are later released triggering a spurious avalanche signal
 - **1** w.r.t V_{bias} , dead time
 - ↓ lowering the pixel size

Typical SPAD-pixel specifications

	Value range
SPAD pixel	
Dead time [ns]	10–100
DCR [cps/µm ²]	0.3–100
PDP (peak) [%]	10–50
Fill factor [%]	1–60
Timing resolution [ps]	30–100
Afterpulsing probability [%]	0.1-10

Table from Ref. [6]

Advantages of SPAD sensors

> up to tens of picosecond timing resolution

- > single photon sensitivity
- Manufacturing process scalability for SPAD realized in CMOS-based technologies
- Fast gating capabilities
- room temperature operation
- insensitive to magnetic field

Part 2: SPAD imagers

up to newly developed multi-megapixel configurations

SPAD imagers: main architectures

Linear (1D)

Pictures from Ref. [6]

Pros: electronics can be located outside the sensor preserving the fill factor & in parallel operations can be performed **Con:** scanning are needed to generate a 2D image Planar (2D)

Advantage: bi-dimensional images can be acquired directly with in-pixel processing Drawbacks : increasing complexity for the integration of in-pixel advance features + dropping of the fill factor

top : *SPAD* image *sensor* **bottom** : *control* and *processing* **layers** can be independently optimized to enhance the sensor's performance metrics

Trends in the miniaturization of SPAD arrays

Main issue in scaling down SPAD pixels

Key Idea: guard-ring width W_{gr} has to be sufficiently large to avoid the **premature edge breakdown** but the optimal W_{ar} is independent on the pixel scaling (1 or 2 μ m)

Recent developments: charge-focusing SPADs

Objective: pixel size < 10 μm, providing a high fill factor while limiting the dark count rate

Key Idea of charge-focusing : the electrostatic potential is designed to minimize the multiplication region, while maximizing the photo-sensitive region

CANON[©] optimized layout and doping profile → **better PDE** + **lower DCR**

Lower p-n junction parasitic capacitance enables further suppression of after-pulsing probability, crosstalk, power consumption & dead time

Newly developed 3.2 Mpixel charge-focusing SPAD sensor

Full-resolution color intensity image captured under **high light** conditions

Pictures from Ref. [1][4]

2 mlux w/o **post-processing** Darker than starless night conditions

0.3 mlux w/o **post-processing** as when naked eye cannot perceive objects

Part 3: Applications

Basics of FLIM

fluorescence as 3-stage process

- I. Excitation via absorption of light
- II. Transient w/ loss of energy
- III. Jump back to ground state w/ photon emission

• fluorescence lifetime microscopy

- ➤ Exploit the temporal features of a fluorophore that are independent on its concentration → additional information, enhanced contrast
- Fluorescence lifetime (τ_{FL}) is affected by
 molecular environment of the
 fluorophore such as ion concentration,
 pH, etc.
- \succ $\tau_{\rm FL}$ is on the order of *ns*

Picture from https://www.leica-microsystems.com/science-lab/ what-is-flim-fluorescence-lifetime-imaging

Main factor limiting the wide adoption of this technique for routine microscopy applications involving cell imaging is the speed of the scanning systems

Working principle of TCSPC FLIM

Wide-field FLIM time-gated SPAD camera (0.5 Mpx)

Sensor specifics (Pixel A)

Pitch	9.4µm
Size	1024 x 500
Fill Factor	7%
Data Rate (A+B)	24.5 Gb/s
Gate Length	3.8 ns

Picture from Ref. [3]

Picture from Ref. [3]

Wide-field FLIM time-gated SPAD camera (0.5 Mpx)

Lifetime Extraction

From the measured signal $f_i(t) = d(t) \otimes g(t)$

where:

- g(t) is the Impulse Response Function
- d(t) is the decay fluorescence model

To tackle this (not trivial) problem two strategies have been studied in [5]

I. Least square (LSQ) deconvolution

II.Custom-made ANN

Pre-trained ANN vs LSQ deconvolution performance

Pre-trained ANN is up to 1000x faster than LSQ algorithm

Summary

- SPAD tens of picosecond timing resolution + single photon sensitivity enable timeresolved low-light imaging , such as FLIM
- Recent developments in SPAD pixel miniaturization has overcame the mega-pixel barrier, paving the way for compact & low-cost imaging applications with dim light. However further reduction in the pixel size is very challenging
- Advancements in 3D-stacked technologies could allow cutting-edge SPAD pixel scaling & sophisticated digital processing *in situ*

References

- (1)K. Morimoto et al., *3.2 Megapixel 3D-Stacked Charge Focusing SPAD for Low-Light Imaging and Depth Sensing*," 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2021, pp. 20.2.1-20.2.4, doi: 10.1109/IEDM19574.2021.9720605 available here
- (2)K. Morimoto, *Charge-Focusing SPAD Image Sensors for Low Light Imaging Applications*, 2020 International SPAD Sensor Workshop (ISSW)
- (3)E. Charbon, C.Bruschini, *Large-format SPAD image sensors for biomedical and HEP applications,* Conference NDIP (9th Conference on new developments in photodetectors), Troyes, France, July 4-8, 2022 available here
- (4) K. Morimoto, Megapixel SPAD cameras for time-resolved applications (2021) PhD Thesis
- (5) Zickus, V., Wu, ML., Morimoto, K. et al. *Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation*. Sci Rep 10, 20986 (2020). https://doi.org/10.1038/s41598-020-77737-0
- (6)Bruschini, C., Homulle, H., Antolovic, I.M. et al. *Single-photon avalanche diode imagers in biophotonics: review and outlook*. Light Sci Appl 8, 87 (2019). https://doi.org/10.1038/s41377-019-0191-5https://doi.org/10.1038/s41377-019-0191-5
- (7) E. Charbon, SPAD Pixel Detectors with High Time Resolution, available here
- (8) Vil A, Arbat A, Vilella E, Dieguez A. Geiger-Mode Avalanche Photodiodes in Standard CMOS Technologies, Photodetectors. InTech; 2012. Available from: http://dx.doi.org/10.5772/37162
- (9) Cusini I. et al., *Historical Perspectives, State of Art and Research Trends of SPAD Arrays and Their Applications (Part II: SPAD Arrays),* Front. Phys., 04 July 2022, Sec. Radiation Detectors and Imaging, Volume 10 2022 https://doi.org/10.3389/fphy.2022.906671
- (10)Ito S, Hashimoto M, Taguchi Y. Development of a Robust Autofluorescence Lifetime Sensing Method for Use in an Endoscopic Application. Sensors (Basel). 2020 Mar 26;20(7):1847. doi: 10.3390/s20071847. PMID: 32225086; PMCID: PMC7180751
- (11)Slawomir Piatek, MPPC & SPAD: future of photon counting detector available here

Thanks for your attention